
General Post Processor
Version 12

All rights reserved by Cimatron Ltd.

No part of this software or document may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying or recording, for any purpose, without
written permission from Cimatron Ltd.

Cimatron may make improvements and changes in the software described in this document at any
time and without prior notice. These changes will be documented in future editions of this
publication.

 Copyright Cimatron Ltd. 1984-2001

Cimatron, Cimatronit, Cimulator, Sketcher, CimaRender, CimaDEK, MoldBase, MoldBase 3D,
Re-Enge, CPDM, MPDM, Cimagrafi and the C logo design are trademarks of Cimatron Ltd.
QuickCompare, QuickElectrode, QuickConcept, QuickSplit, QuickMold and Quick Tooling are
pending trademarks of Cimatron Ltd. Cimatron, Cimulator, Sketcher, CimaRender, CimaRender
Pro, CimaDEK, Cimagrafi, and the C logo design are registered in the U.S. Patent and Trademark
Office. CimaRender and CimaRender Pro are copyrighted by Graffiti Software Industries Ltd.
MoldBase 3D is based on a product copyrighted by R&B Ltd. Cimatron IMSpost is based on a
product copyrighted by Intelligent Manufacturing Software, Inc. IMSpost is a trademark of
Intelligent Manufacturing Software, Inc. MODView is copyrighted by Dataface, Co. Ltd.

All other company and product names are trademarks or registered trademarks of their respective
owners.

All references to other trademarks and/or copyrighted material is for identification purposes and/or
unintentional.

Cimatron Ltd. is not necessarily associated with any other product or vendors mentioned herein.

Disclaimer of Warranty and Liability.

No representations or warranties, expressed or implied, of any kind are made by or
with respect to anything in this document.

In no event shall Cimatron Ltd., its employees or previous employees, be liable for
any incidental, direct or indirect, special or consequential damages whatsoever
(including but not limited to loss of profits) arising out of or related to this manual,
and/or the product, or any use thereof.

Revised 2001.

S
Preface

Cimatron develops, markets and supports tools to automate the mechanical engineering process.
Our systems support all phases of product development, with solutions for computer aided design
(CAD) and manufacturing (CAM). Cimatron‘s integrated technology approach combines design
tools with optimized command output to computer-controlled manufacturing equipment.
Drafting-table-to-shopfloor integration lets Cimatron clients realize dramatic efficiencies in product
development and manufacturing.

Cimatronit - Cimatron’s flagship product - covers the entire spectrum of design, engineering and
manufacturing processes, including:

• A complete range of wireframe, surface and parametric solid modeling tools

with rendering capabilities;

• Advanced assembly, sub-assembly and part management, and associative

drafting functionality;

• Comprehensive, accurate data exchange interface utilities covering DXF,

DWG, IGES, JAMA-IS, VDA, PTC, STEP, SAT, CATIA and

UNIGRAPHICS;

• Powerful and intelligent NC applications for precise multi-axis machining.

The modular yet integrated structure of Cimatronit grows to accommodate cutting edge tools and
techniques. These now include the new Quick Tooling applications:

• QuickSplit

QuickSplit automates the search and separation of core, cavity and sliders to

assist in determining the number of actions required to create a mold. After

separating core, cavity and slides, QuickSplit identifies the parting lines and

generates the parting surface.

Automatic and interactive tools allow the construction of parting surfaces for

any complex geometry. Embedded Draft Analysis enables designers to identify

potential problems with undercuts and confirm minimum draft per side.

QuickSplit is tolerant of surface models with gaps, mismatched boundaries or

missing faces, therefore bypassing data corrections and saving precious time.

Component motion animation, dynamic cross-sectioning and clipping planes,

reduce human error and verify parting design. QuickSplit enables several trial

and error iterations in a very short time - resulting in optimal draw directions.

• QuickElectrode

QuickElectrode is an EDM electrode design solution used for shortening the

electrode process. QuickElectrode is used for burn area selection, electrode

design, management, documentation and manufacturing.

The QuickElectrode Navigator enables full control over the display and

activation of electrodes, while allowing several users to collaborate on the same

part.

Preface-1

QuickElectrode’s report generation features includes set-up sheets, burn location

reports and a full electrode schedule, therby alleviating the tedious task of

documenting the process .

• QuickConcept

QuickConcept is a preliminary design and review package which allows tool

designers and their suppliers to hold virtual review meetings over the Internet in

real-time. Multiple users can connect to each other to section, label, dimension,

and identify points of interest and problem areas of any given tool. All members

of the review meeting will interactively view the same screen at the same time.

• QuickCompare

QuickCompare assists the tool designer in determining the scope and effect of

Engineering Changes (ECOs) on the tooling process. QuickCompare

mathematically compares the geometrical differences between two sets,

graphically marks these differences and documents the changes in a CAD file.

Here, the designer updates related components and tooling, while archiving

ECOs. The typically long CAD investigation process is significantly shortened.

QuickCompare ensures that all ECOs have been located, whether or not they

were communicated from design.

• MoldBase 3D

MoldBase3D offers an innovative wizard-based approach to parametric mold

base design. MoldBase3D automatically creates 3D solid (parametric &

associative) moldbases, with all components and accessories, from

industry-standard catalog suppliers such as HASCO, DME, PCS, FUTABA,

DMS, PEDROTTI, RADOURDIN, SIDECO, STRACK and MISUMI. Creation

of the assembly and detailed drawings of each plate are automated, complete

with 2D and 3D section views, ordinate dimensions, labels, balloons, and an

itemized Bill of Materials. This module is fully associative to the mold design

and changes are automatically reflected in all stages of the design process.

Cimatron’s automated engineering expertise benefits many industries, as competition requires
tighter development cycles and efficient fabrication.

Powerful modules within Cimatronit expand your system’s capabilities. These may be purchased
from your Cimatron representative.

This publication provides a detailed description of the major features of the appropriate Cimatronit

application/topic. It is intended to help users in the daily operation of Cimatronit.

A list of Cimatronit documentation, for the current version, is shown on the next page.

Preface-2

Cimatron Documentation
Cimatronit documentation comprises Reference Manuals, On-Line Help and Tutorials which
together provide a comprehensive guide to Cimatronit.

The list of Cimatronit documentation, for the current version, is as follows:

Publication Description
Display
Options *

Cimatronit

Reference
Manuals

Fundamentals &

General Functions

Introduction to the fundamentals of Cimatronit and

description of the General functions.
A H

Modeling
Description of the wireframe and surface Modeling

functions.
A H

QuickSplit

QuickSplit automates the search and separation of core,

cavity and sliders to assist in determining the number of

actions required to create a mold.

A H

QuickElectrode
QuickElectrode is an EDM electrode design solution used

for shortening the electrode process.
A H

QuickCompare

QuickCompare mathematically compares the geometrical

differences between two models, graphically marks these

differences and documents the changes in a CAD file.

A H

Drafting Description of the Drafting functions. A H

Solid Modeling Solid Modeling functions including Sketcher. A H

MoldBase 3D

Description of the functions associated with the detailed

design of mold plates and components.

MoldBase3D offers an innovative wizard-based approach

to parametric mold base design.

A W

Numerical Control Description of the NC functions. A H

Cimatron IMSpost
Cimatron IMSpost is a macro-based system for

developing and customizing postprocessors.
A W

General Post Processor General Post Processor (GPP) functions. A

Finite Element Modeling Description of Finite Element Modeling (FEM) functions. A H

Utilities

Various utilities that may be used with Cimatronit. These

utilities are either Internal, run via the USER function, or

External, run via the Main Menu.

A H

Data Interface Utilities

Description of Cimatron’s comprehensive data interface

utilities; DXF, DWG, IGES, JAMA-IS, VDA, PTC, STEP,

SAT, CATIA and UNIGRAPHICS.

A W

CimaDEK
Cimatron’s specialized Developer’s kit, for programming

customized functions.
A

CimaRender Pro A photo-realistic rendering package. A W

MPDM: Getting Started

MPDM: Administrator

Description of how to use Manufacturing Product Data

Management to track and organize all files and data

associated with a project.

A W

Re-Enge Description of Reverse Engineering design functions. A

Cimatronit

Tutorials

Design - covers QuickCompare and QuickElectrode. A H

Drafting - covers the DMS function. A H

NC - covers the differences between versions 11 and 12. A H

* Legend: A Acrobat PDF

H HTML

W Winhelp

�

Preface-3

Table of Contents

Introduction

Chapter 1 The Procedure

1.1 Introduction . 1-1

1.1.1 PC Interaction . 1-1

1.1.2 UNIX Interaction . 1-2

1.2 The Procedure . 1-3

1.3 The DFPOST Questions . 1-5

1.4 The Post-processor Program File . 1-6

1.4.1 Key-in the Post-processor Program File Text 1-6

1.4.2 Compile the Post-processor Program File 1-6

1.5 Preparing An External Program Monitor Routine 1-7

1.5.1 Key-in the External Program Monitor Routine 1-7

1.5.2 Compile and Link the External Program Monitor Routine. 1-9

Chapter 2 The Post-processor Program File

2.1 Block Syntax Rules . 2-3

2.2 Qualifiers . 2-4

2.3 User-defined Blocks . 2-5

Chapter 3 Variables and Constants

3.1 Formats of Variable Values . 3-2

3.2 Modal & Non-Modal Status of Variables . 3-2

3.3 Literal Constants . 3-3

3.4 Control Characters . 3-3

3.5 Special Constant – TAB_ . 3-4

Cimatron GPP 12 i

Table of Contents

Chapter 4 Declaration Statements

4.1 FORMAT . 4-2

4.2 IDENTICAL . 4-4

4.3 INTERACTION . 4-4

4.4 MODAL . 4-5

4.5 NON_MODAL. 4-6

4.6 NEW_LINE_IS . 4-6

4.7 SET_TABS . 4-7

Chapter 5 Executable Block Statements

5.1 KEEP. 5-2

5.2 OUTPUT. 5-2

5.3 PRINT . 5-2

5.4 The Assignment Statement . 5-3

5.5 IF_SET (Conditional Execution). 5-3

5.6 IF_EXISTS (Conditional Execution) . 5-6

5.7 REPEAT, UNTIL (Loops). 5-7

5.8 Changing the “on/off” Indicators – SET_ON and SET_OFF 5-7

5.9 CALLing an External Program . 5-8

5.10 CONVERT . 5-9

5.11 CUT_FILE . 5-10

Chapter 6 Using Subroutines

Chapter 7 System Flags

Chapter 8 External POSTPR (EXTPST)

Appendix A Blocks and Their Variables

Appendix B Formats for Variables

ii Cimatron GPP 12

Table of Contents

Appendix C Statement Syntax Summary

C.1 Declaration Statements . C-1

C.2 Executable Statements . C-2

Appendix D DFPOST Questions

D.1 Tape Information . D-1

D.2 Programming Mode and Unit . D-1

D.3 Formats . D-2

D.3.1 Format Options . D-3

D.4 Positioning Codes (Not in use after version 5.0) D-3

D.5 Messages and Inserts . D-3

D.6 Machine Parameters . D-3

D.7 Linear Motion . D-4

D.8 Circular Motion . D-4

D.9 NURBS motion . D-5

D.10 Canned Cycles . D-5

D.11 Output Files. D-5

D.12 POSTPR/EXTPST Interface . D-6

Appendix E Post-processor Program File Structure

Appendix F Sample Tool Path Listing

Procedure Header List. F-1

Tool Path Listing . F-2

Appendix G Sample Output Program File

Appendix H Script After Post-processor

Appendix I Forbidden Names for User Defined Variables and Blocks

Cimatron GPP 12 iii

Table of Contents

Appendix J Error Messages

Appendix K Sample External Program
Monitor Routine and Subroutine

Appendix L Assignment Statement Calculator Options

Appendix M List of Existing Procedure Names & Tool Path Types

Appendix N ROT_MAT and ORIGIN CHANGE

N.1 Origin Information . N-1

N.2 Tool Position Information . N-1

N.3 Machine Position Calculation . N-2

N.4 Upgrading an Existing 4 Axis Post-processor to the New ROTMAC . . N-6

N.5 Post Processor ROTMAC. N-9

iv Cimatron GPP 12

Table of Contents

S
Introduction

We recommend that new users read at least the first three chapters of the Fundamentals &
General Functions Manual, to acquire a working knowledge of Cimatron.

After you are familiar with the basic system, scan the manual occasionally to discover functions you
are not using and to learn how to take full advantage of the power of Cimatron.

About This Manual

This manual provides explanations of the General Post-processor procedure.

Chapter 1 The Procedure.

Chapter 2 The Post-processor Program File.

Chapter 3 Variables and Constants.

Chapter 4 Declaration Statements.

Chapter 5 Executable Block Statements.

Chapter 6 Using Subroutines.

Chapter 7 System Flags.

Chapter 8 External POSTPR (EXTPST).

Appendix A Blocks and their Variables.

Appendix B Formats for Variables.

Appendix C Statement Syntax Summary.

Appendix D DFPOST Questions.

Appendix E Post-processor Program File for FANUC.

Appendix F Sample Tool Path Listing.

Appendix G Sample Output Program File.

Appendix H Script After Post-processor.

Appendix I Forbidden Names for User Defined Variables and Blocks.

Appendix J Error Messages.

Appendix K Sample External Program Monitor Routine and Subroutine.

Appendix L Assignment Statement Calculator Options.

Appendix M List of Existing Procedure Names & Tool Path Types.

Appendix N ROT_MAC and ORIGIN CHANGE.

Cimatron GPP 12 Introduction Intro-1

S Chapter 1

The Procedure

1.1 Introduction

This document describes each of the steps in detail. Angle brackets are used to indicate a name or
value input by the user.

The definition of a specific post-processor and any external programs which may be called takes
place in four stages, which are described on page 1-3. After everything is defined, the POSTPR
function in Cimatron NC or the EXTERNAL POST in cim90 -ext is run to produce the output
program which directs the machining of a specific machine along the selected Tool Path(s).

Three of the stages are accessed via the Cimatron EXTERNAL UTILITIES. Type cim90 -ext to enter
the External Utilities, or run EXTERNAL from the PC. Both PC and Unix interactions are shown
below:

1.1.1 PC Interaction

The buttons indicated below relate to the post processor.

Post Processor

Definition

Define a specific post-processor.

Compile .exf File Compile an .exf file.

Post Processor Execute the post processor.

For descriptions of external NC utilities, see the Cimatron Utilities Manual.

Cimatron GPP 12 The Procedure 1-1

1.1 Introduction

1.1.2 UNIX Interaction

Run CIM90 -ext, and open option <2>, NC UTILITIES.

NC UTILITIES

<1> - NC SERVICE

<2> - EXECUTE Toolpath

<3> - EXTERNAL BUILD OF LIBRARY

<4> - EXTERNAL REPORT OF LIBRARY

<5> - POST PROCESSOR DEFINITION

<6> - COMPILE .EXF FILE

<7> - POST PROCESSOR

Options <5>, <6> and <7> above are related to the post processor. The POST EDIT
function is not available in UNIX.

For descriptions of external NC utilities, see the Cimatron Utilities Manual.

1-2 The Procedure Cimatron GPP 12

1.1 Introduction

1.2 The Procedure

Action:

I. Select POST PROCESSOR DEFINITION (DFPOST) from the GPP external utilities
menu. In this program questions are answered concerning basic machine
capabilities (units, dimensions etc.), formats and codes.

2. Using the operating system editor, a Post-processor Program File is keyed-in, in
which customized characteristics can be described for each block referred to in the
selected Tool Path(s). In addition, up to 50 different external programs may be
called for execution wherever they are needed.

Select COMPILE .EXF FILE (DFEXF) from the GPP external utilities menu to
compile the Post-processor Program File.

3. If external programs are called in the Post-processor Program File, a routine
named UGPSUB which monitors the external programs must be keyed-in using the
operating system editor.

Select COMPILE AND LINK EXTERNAL PROCESSOR PROGRAM (UGPPLINK)
from the GPP external utilities menu to compile UGPSUB and to link all the
necessary files.

4. If an Operating System command file is to be run after the Post Processor has
ended, key in the command file.

5. The POSTPR function is run from within Cimatron NC. Data described in the
previous stages (answers to questions, and statements from the Post-processor
Program File and calls to external programs) are combined with Tool Path data in
order to produce a specific NC output program that is unique to a given
machine/end-user combination.

The order of stages I to IV is not important. All tasks, however, must be completed and a Tool Path
must have been created using the Cimatron NC program before POSTPR can be used to create the
final specific output files.

The lines of the Tool Path correspond to blocks in the Post-processor Program File. See Appendix
A in the NC Manual, for a detailed explanation of Tool Path lines. When a line of data is read from
the Tool Path, statements in the corresponding block in the Post-processor Program File are
executed, using the Tool Path data and data from the answers to the questions asked in the DFPOST
stage. This process continues until all lines have been read from the last Tool Path. Sample output
from each stage in the process is included in the appendices.

Notes: • All source and output files must be located in the
<root_cad>\var\post directory or in the
<root_cad>\var\profiles\<profile_name> directory, except the
<PPname>.exf file which can be located anywhere.

• Output files are created in the current directory.

• In the output file, the name of the procedure is
<part>.<tp-procedure>.<pp>.

Cimatron GPP 12 The Procedure 1-3

1.2 The Procedure

1-4 The Procedure Cimatron GPP 12

1.2 The Procedure

Define New Post Processor (Optional)

Q Not available on the PC. File extension is .f for Unix.
QQ The file extension is defined by the user in the DFPOST. If blanks are defined,

no print files will be created.
QQQ The file extension is defined in the POSTPR >> EXTPST process.

Figure 1-1: The GPP Procedure

<part>.<tp>.ext1

USER DEFINED FILES

JOURNAL FILE

print0.txtMain G-code File

<part>.<tp>.<pp>

List of User Messages

<part>.<td>.<pp>.msg

Subroutine Files

<part>.<tp>.s1

. . .

<part>.<tp>.s99

. . .

<part>.<tp>.ext10

Truncated Files

<part>.<tp>.<pp_1>

. . .

<part>.<tp>.<pp_99>

List of Tools, Tool Path

Names, estimated machining

time and enclosing box XYZ

<part>.<tp>.<tools>

List of Cycles

<part>.<tp>.<cycles>

Origin List and Tool Path

Names <part>.<tp>.<origins>

<part>.<tp>.<pp>.log

Run

DFEXF

Answer DFPOST

Questions

<PPname>.dex <PPname>.def

Run

UGPPLINK

Key-in Monitor

Routine UGPSUB

<PPname.f>

Key-inOperating

System Script

<PPname>.cmd

Create

Tool Paths

<tp1>..<tpn>

Run

POSTPR (Internal) or EXTPST

REPORT FILESG-CODE FILES

Key-in Program

File

SCRIPT FILES

Executable Linked

Program <PPname>.exe

Script File

<PPname>.cmd

Q

QQQ

QQ

1.3 The DFPOST Questions

Input Answers to questions listed in Appendix D.

Output A file in directory POST based on the input and named,
<post-processor name>.def.

Select POST PROCESSOR DEFINITION (DFPOST) from the GPP external utilities menu. A list of
the existing post-processors (up to 70 post-processors may be displayed), if any, will be displayed
with the following message:

Place cursor on file to be loaded and press <CR> or press <ESC> to exit.

Use the arrow keys to move the cursor to the post-processor whose values you would like to load as
defaults for this new post-processor and press <CR>. Press <ESC> to leave the program.

Place cursor on section and press <CR> to end or <ESC> to exit.

SECTIONS
1. TAPE INFORMATION
2. PROGRAMMING MODE AND UNIT
3. FORMATS
4. POSITIONING CODES
5. MESSAGES AND INSERTS
6. MACHINE PARAMETERS
7. LINEAR MOTION
8. CIRCULAR MOTION
9. NURBS MOTIONS
10. CANNED CYCLES
11. OUTPUT FILES
12. POSTPR/EXPST INTERFACE

Use the arrow keys to move to the question types whose answers you want to verify or change and
press <CR>. The questions appropriate to the section you selected will be displayed. The questions
which appear for each type are in Appendix D.

The default answers will be those of the post-processor you loaded. If there is no post-processor to
load, the default values will be the ones in Appendix D.

Use the arrow keys to move to the line you want to change. Enter the appropriate numbers or text
and press <CR>, or press <TAB> to scroll through the options.

Cimatron GPP 12 The Procedure 1-5

1.3 The DFPOST Questions

Note: • All variables which indicate length are initially expressed in
millimeters. To convert the output to a different unit of measure,
enter a factor in Section 2 (PROGRAMMING MODE AND UNIT),
Question 5 which will be multiplied by the number of units of the
part.

When you are finished with each section, press <ESC> to return to the list of sections. Press <ESC>

again to display the following:

Press <TAB> to change options, <ESC> to return or Press <CTRL Z> to exit.
Post-processor <enter a post-processor name>
Save definition YES, NO
Replace it? YES, NO
Prepare a print out file?
YES, NO

Enter a name for the post-processor, up to six characters long, which conforms to the naming
standards of the local operating system. This file must have the same name as the program file
created by the DFEXF stage.

Use the arrow keys to move through the other questions without changing them or press <TAB> to
change the settings. Press <CTRL> Z to end this stage and create the file. Blank the name and press
<CTRL> Z to escape without processing. Press <ESC> to return to the questions.

A file will be created having the assigned name and with the extension .def. It will be stored in the
POST directory.

1.4 The Post-processor Program File

1.4.1 Key-in the Post-processor Program File Text

You may use the operating system to copy a Post-processor Program File, having the extension .exf,
from directory POST and rename it, using the same extension. If you prefer, create the
Post-processor Program File from scratch. The Post-processor Program File must have the same
name as the file created by the DFPOST stage except for the extension. The name may have up to
six alphanumeric characters and must conform to the naming standards of the local operating
system.

Using the operating system’s editor, change the text, as described in this document, until it
accurately describes the machining conditions for which a specific post-processor is being defined.

1.4.2 Compile the Post-processor Program File

Input A program file in the POST directory named
<post-processor name>.exf containing customized block statements
which was created using the operating system and editor.

Output A compiled Post-processor Program File in the POST directory,
named: <post-processor name>.dex

Select COMPILE .EXF FILE (DFEXF) from the GPP external utilities menu. The Post-processor
Program File will be compiled and have the assigned name with the extension .dex. It will be stored
in the POST directory.

1-6 The Procedure Cimatron GPP 12

1.4 The Post-processor Program File

1.5 Preparing An External Program Monitor Routine

1.5.1 Key-in the External Program Monitor Routine

This routine monitors the calls for external programs from within the Post-processor Program File
and controls the transfer of values for variables between programs. The first section controls which
subroutine is run. The following sections each correspond to a different external program which is
being called. See Appendix K for an example of this routine and a more detailed explanation of the
subroutines provided for getting and setting variable values.

Section I

Determine which external program to run. Although each Post-processor Program File may call no
more than 50 different external programs, this routine may include any number. Only those called
will be executed.

Subroutine UGPSUB (NAME,L)
Character*6 NAME
Integer L
If (NAME(1:L).EQ.’<external program name 1>’) THEN

CALL <external program name 1>
Else If (NAME(1:L).EQ.’<external program name 2>’) THEN

Call <external program name 2>
. . .
. . .
Else If (NAME(1:L).EQ.’<external program name n>’) THEN

Call <external program name n>
Endif
Return
End

Cimatron GPP 12 The Procedure 1-7

1.5 Preparing An External Program Monitor

Routine

Section II

Key-in a subroutine for each external program called. Include the following three steps in every
subroutine.

Step 1

Define the variables and get the values of input variables from the Post-processor Program File for
use in the external program.

GTEPGP Get the values of integer or real variables which are input to an
external program.

GTEPGD Get the values of double precision variables which are input to an
external program.

GTCPGP Get the values of character variables which are input to an external
program.

Example: Subroutine <external program name 1>
Real <variable value 1, variable value 2, variable value 3>
Integer <variable value 4>
Character <variable value 5>
Call GTEPGP(‘<variable name 1>’,<variable value 1>)
Call GTEPGP(‘<variable name 2>’,<variable value 2>)
Call GTEPGP(‘<variable name 4>’,<variable value 4>)

Step 2

Insert the external program here. It may be Fortran code, a call to a Fortran subroutine or a call to a
program in another programming language which is recognized by the operating system.

Example: <variable value 3> = <variable value 1> - <variable value 2>
<variable value 4> = <variable value 4> * 2
<variable value 5> = ‘OK’

Null string (“) may not be assigned.

1-8 The Procedure Cimatron GPP 12

1.5 Preparing An External Program Monitor Routine

Step 3

Take the values which result from the external program calculations and return them to the
Post-processor Program File.

STEPGP Set the values of integer or real variables which are output from an
external program.

STEPGD Set the values of double precision variables which are input to an
external program.

STCPGP

Set the values of character variables which are output from an external program.

Example:

Call STEPGP (‘<variable name 3>’,<variable value 3>)
Call STEPGP (‘<variable name 4>’,<variable value 4>)
Call STCPGP (‘<variable name 5>’,<variable value 5>)

Return
End

1.5.2 Compile and Link the External Program Monitor Routine

Input A routine named UGPSUB which contains external programs and
was created using the operating system and editor.

Output A compiled program which is linked to the necessary files.

Select UGPPLINK from the GPP external utilities menu. Compilation and linking will be done.

Note: • See the Installation document for the configuration requirements to
use UGPPLINK.

This routine does not run on a PC (DOS, Windows NT or Windows 95). �

Cimatron GPP 12 The Procedure 1-9

1.5 Preparing An External Program Monitor

Routine

S Chapter 2

The Post-processor Program File

The first section of the Post-processor Program File, contains declaration statements which set the
operating conditions for the variables before block statements can be executed.

The body of the Post-processor Program File is made of blocks containing executable statements.
These blocks correspond to the lines of the Tool Path in the Post-processor Program File. The user
can set the executable statements and values for each block. In this way the post-processor program
can be customized not only for a specific NC machine, but for a specific user as well.

Comment lines may be included in the Post-processor Program File to make it easier to read by
typing an asterisk before the comment. Comment lines will be ignored during execution.

The names, order of appearance and basic structure of system-defined blocks are set by the
Cimatron NC system. A list of the system-defined blocks follows.

Block Name Contents Description

AXIS CHANGE: Statements to be executed if the number of axes required for
machining changes.

Example: First procedure uses RULED_5X and second uses PROFILE.
PROFILE is 2D.

BEGINNING OF PROC: Statements to perform at the beginning of each procedure.

BEGINNING OF SUB: Statements to be executed at the beginning of a subroutine.
(Applicable in milling only.)

BEGINNING OF TAPE: Statements to perform at the beginning of the output program
file or a new tape. (Example: Name of the tape, Date,
Initialization of variables).

BEGINNING OF TLPATH: Statements to be executed at the beginning of each Tool Path.

CIRCULAR MOTION: Statements to be executed during circular tool motions.

CONSTANT SPEED: Same as above for lathe machining only.

COOLANT: Statement to be executed when the coolant is changed.

CUTTER COMPENSATION: Statement to be executed when the cutter compensation is
turned on or off.

CYCLE: Statements to execute when drill cycles are encountered.
(Applicable in milling only.)

Note: • Drill cycle variables that were not specified using the DRILL
CYCLES option of DRILL in Cimatron NC will not be set.
Statements which include these variables should use the IF_SET

conditional statement to check the setting of the variables. (Ex:
CYC_PECK, CYC_DWELL, CYC_SHIFT)

Cimatron GPP 12 The POSTPR Program File 2-1

DWELL: Statement to be executed when the dwell is changed.

END OF FILE: Statements to be executed at the end of the main program
file.

END OF PROC: Statements to be executed at the end of each procedure.

END OF SUB: Statements to be executed at the end of a subroutine.
(Applicable in milling only.)

END OF TAPE: Statements to be executed at the end of the tape.

END OF TOOL PATH: Statements to be executed at the end of each Tool Path.

FEED: Statement to be executed when the feed is changed.

GROOVE CYCLE: Statements to execute during a simple groove cycle.
(Applicable in lathe machining only.)

INSERT WITH
(SEQUENCING):
INSERT WITHOUT
(SEQUENCING):

Statements to OUTPUT or KEEP strings which were inserted
in the Tool Path with the SERVICE common option of
Cimatron NC and other actions to perform when they are
encountered.

LINEAR MOTION: Statements to be executed during linear tool motions.

MESSAGE: Statements to be executed when a message is encountered in
the Tool Path, unless it is a tool change message.

NIBBLE: Same as above for punch machining only.

NURBS MOTION: Statements to be executed during nurbs (spline) tool motions.

ORIGIN CHANGE: Statement to be executed if the origin is changed.

SPIN: Statement to be executed when the spin speed or spin
direction is changed.

START STRING:* Statements to be executed before starting a string of linear
tool motions.

START THREAD: Statements to execute before starting a thread tool motion.
When a multiple thread is being machined, the start number
may be defined here. (Applicable in lathe machining only.)

STOP POINTS: Statements to be executed at a STOP POINT. (Applicable in
wire-EDM machining only.)

SUBROUTINE CALL: Statements to be executed when a subroutine is called.
(Applicable in milling only.)

SUBROUTINE RETURN: Statements to be executed at the main program after
returning from the subroutine

THREAD CANNED CYCLE: Statements to execute during a canned thread cycle.
(Applicable in lathe machining only.)

THREAD CYCLE: Statements to execute during a simple thread cycle.
(Applicable in lathe machining only.)

THREAD STEP: Same as above for lathe machining only.

TOOL CHANGE: Statements to be executed in case of a tool change.

TOOL CHANGE MESSAGE:

2-2 The POSTPR Program File Cimatron GPP 12

In the event of a tool change, the system-generated tool
change message, and/or a user-defined message, will be
OUTPUT in this block.

TRANSFORMATION: Motions from this block are caused by new transformations.

WIRE: Statements to be executed in wire-EDM machining when the
wire is threaded.

Z SURFACE: Statements to execute when the drilling surface level is
changed. (Applicable in mill/drill machining only.)

In addition, there may be user-defined blocks. See Section 2.3, User Defined Blocks, for more
details.

As each line of data is read from the Tool Path, the appropriate block is accessed. Statements in that
block are executed using Tool Path data to provide values for the system variables, data specified in
the DFPOST stage and user-defined variables which are defined in the Post-processor Program File.

The machining process can be traced by reading the printout of the Tool Path (produced with the TP
LIST option of SERVICE using the Cimatron NC program) and the printout of the Post-processor
Program File together. It will then be possible to understand how they interact and how, together
with the answers to the DFPOST questions, they produce the customized output program. Samples
of each are included in the appendices.

TP LIST Post-processor Program Block

Example 1: MACH.PAR. TOOL 1 TOOL CHANGE: . . .

Example 2: SIMPLE LIN. LINEAR MOTION: . . .

In the example which follows, TOOL CHANGE is the name of the block. The next two lines are the
body of the block which can be customized. The OUTPUT and SET_ON statements will be
explained later. Appendix A contains a complete list of the system-defined blocks and the variables
associated with each.

Example: TOOL CHANGE:
OUTPUT ! “T” CURR_TOOL “M66" ;
SET_ON ALL_VAR;

2.1 Block Syntax Rules

Block names serve as delimiters between operations. They appear alone on a line unless qualifiers
are used. This line is ended by a colon (:) immediately following the name. The Post-processor
Program File is case insensitive, the results will be the same whether entries are in upper or lower
case, or a combination of both.

Although the position of the lines following the block name will not affect program execution,
indenting them improves legibility.

Cimatron GPP 12 The POSTPR Program File 2-3

2.1 Block Syntax Rules

2.2 Qualifiers

Sometimes the blocks defined by the Cimatron NC system do not allow a detailed enough
description. Qualifiers are added by the system to the block name to further qualify the conditions
under which the lines following it will be executed. The same block name may be used a number of
times, each time with a different qualifier.

The qualifier must appear in the same line as the block name, after the colon (:) which follows the
block name. The qualifier name must also be followed by a colon (:).

Example: Cutter Compensation: Coff:
Keep Cutcom_off;

In the example, the block CUTTER COMPENSATION has the qualifier Coff added to it. If the
CUTTER COMPENSATION is off when this block is encountered, the next line will be executed.
Otherwise it will be skipped.

The available qualifiers and the block names with which they are associated are:

Block Name Qualifier Execution Condition

BEGINNING OF
TAPE:

aftercut: The tape was too long and was cut. This is the
beginning of a segment of the tape, but is not the first
segment.

CIRCULAR
MOTION:

tangretr: Circular movement is a tangential retract from contour.

ctangappr: Circular movement is a tangential approach to contour.

CUTTER
COMPENSATION:

coff: Cutter compensation flag is “off.”

CYCLE: off: Drill cycle is turned “off.”

on: Drill cycle is turned “on” and retract is to clearance.

toinit: Drill cycle is turned “on” and retract is to initial plane.

END OF TAPE: beforecut: The tape was too long and was cut. This is the end of
a segment of the tape, but is not the last segment.

Note: • The tape will be cut automatically if the maximum length or number
of blocks set in the DFPOST questions is exceeded. The tape will
not be cut in the middle of a string.

LINEAR MOTION: 3d: Linear motion is parallel to the Z axis.

fast3d Linear motion is at the maximum speed and parallel to
the Z axis.

fast: Linear movement is at maximum speed.

fastfull3d Linear motion is at the maximum speed that affects
the X, Y and Z coordinates.

full3d: Linear movement affects X, Y and Z coordinates.

2-4 The POSTPR Program File Cimatron GPP 12

2.2 Qualifiers

nibbling: Linear movement (for PUNCH segments) is in
NIBBLING mode “on.”

normappr: Linear movement is a normal approach to contour.

normretr: Linear movement is a normal retract from contour.

tangappr: Linear movement is a motion before a tangential
approach to contour.

ltangretr: Linear movement motion after tangential retraction
from contour.

NURBS MOTION: 3d: Linear motion is parallel to the Z axis.

fast3d Linear motion is at the maximum speed and parallel to
the Z axis.

THREAD CANNED
CYCLE:

finish: Finish tool motions are being performed.

spring: Spring (chase) tool motions are being performed.

TOOL CHANGE: first: This is the first tool change.

last: This is the last tool change.

WIRE: no: Movement when the wire is cut.

Z SURFACE: lower: The change in Z is to a lower level (for drill
movements).

Using a block with a qualifier will result in statements if the condition is met. To ensure that the
required block layout description will be found, even if none of the conditions is met, it is advisable
to include another block with the same name, but without a qualifier as in the following example.
The KEEP statement is explained in Section 5.1.

Example: CUTTER COMPENSATION: Coff:
KEEP Cutcom_off;

CUTTER COMPENSATION:
KEEP Cutcom_on;

2.3 User-defined Blocks

The user may define his own blocks of code or text. A block may be typed in the Post-processor
Program File, using the syntax used for system-defined blocks, (i.e., the user-defined block name
must be on a line by itself and be followed by a colon (:). Block statements will be on lines which
follow and each must be followed by a semicolon (;).)

Then, the user-defined block may be referred to by this name and executed when called by the
appropriate line in the Tool Path. Use the common option SERVICE >> INSERT
MESSAGE/CODE >> USER DEF.BLOCK NAME described in Chapter 3 in the Cimatron NC
Reference Manual to insert user-defined block names in the Tool Path.

Cimatron GPP 12 The POSTPR Program File 2-5

2.3 User-defined Blocks

Example: MyBlock:
OUTPUT “Example of output” ;

In the example, MyBlock is the name of a user-defined block. When it is encountered in the Tool
Path, at the position where it was inserted, the instructions included in the following statements will
be executed. In this case, the literal string “Example of output” will be sent to output.

Using the syntax rules described in this document, code, control characters, special constants or
other statements may also be inserted in user-defined blocks. �

2-6 The POSTPR Program File Cimatron GPP 12

2.3 User-defined Blocks

S Chapter 3

Variables and Constants

All variables which indicate length are initially expressed in millimeters. By multiplying the values
by a factor which can be specified in the DFPOST stage, the output can be converted to a different
unit of measure. (Section 2, Question 5 of Appendix D, General Post-processor Questions.)

There are four types of variables used in the Post-processor Program File:

Tool Path variables
Tools/Cycles User-defined variables
User-defined Interaction variables
User-defined variables (also Arrays).

All four types of variables may be either modal or non-modal.

The values of Tool Path variables are set from a Tool Path when corresponding blocks from the
Tool Path and the Post-processor Program File are processed. Tool Path variable names are set by
the Cimatron NC program and contain an underscore.

Refer to Appendix B, Formats for Variables listing, to see in which block each Tool Path variable
gets its value and which format type controls its format.

Up to 50 interaction variables may be defined. They are particularly useful when it is necessary to
change the initial value for a variable each time an output program is created with the POSTPR
function.

The default values of interaction variables are set when they are defined at the beginning of the
Post-processor Program File. These default values are displayed in a menu when the POSTPR
function is accessed and may be changed using the interaction procedures common to all Cimatron
functions. The next time POSTPR is accessed, the last value entered for a variable will be the new
default.

Interaction variables may also be assigned new values and/or changed like user-defined variables, at
any time in the Post-processor Program File.

The following are examples of statements which assign and change the value of the user-defined
variable SEQUENCE. The assignment statement is explained in Section 5.4.

Example 1: SEQUENCE = SEQSTART ;

Example 2: SEQUENCE = SEQUENCE + SEQINCR ;

Cimatron GPP 12 Variables and Constants 3-1

Tool/Cycles user-defined variables can be used in the program file by using the variable name as
appears in the <root_cad>/tools/user.def file with the $ prefix.

Note: • Make sure variable names in this file consist of the same syntax as
User defined variables (only digit and characters).

Example: OUTPUT \J “catalog number:” $catalog

The names of both interaction variables and user-defined variables are set by the user and may not
contain an underscore. A variable name cannot be a reserved DFEXF word (i.e. OUTPUT, TOOLS,
TAN). Only alphabetic or alphabetic plus numeric characters may be used. The first fifteen character
positions of each name are significant and must be unique. The first position must be alphabetic.

Variable

Type
Tool Path Variable Interaction Variable User-defined Variable

Tool/Cycles User defined

Variables

Created by System Declaration Statement Declaration Statement SYSTEM

Named by
System (Contains

Underscore)
User (No Underscore) User (No Underscore)

SYSTEM (according to the

user.def file)

Syntax

example
X_HOME DELTA3 XOLD $CATNUM4

Format set

by

System

(may be overridden in

a FORMAT statement)

User

(in INTERACTION

Statement)

User

(in FORMAT

Statement)

User

(in FORMAT

Statement must match the

user.def file)

Value set

by

System in

Program Blocks

User in the

INTERACTION stage of

the POSTPR
Program Blocks

User in Program Blocks
System in

Tool Change: Blocks

Modify

value

YES

(Not Recommended)
YES YES NO

In addition, ALL_VAR may be used in KEEP or SET_ON (formerly RESET) executable statement
when all variable values will be kept or their modal status reset to “on”. This name includes all four
types of variables.

Constants may also be included in the Post-processor Program File. These may be literal constants
(enclosed in quotation marks), ASCII control characters and/or the special constant, TAB_ (TAB +
underscore).

3.1 Formats of Variable Values

The formats of interaction and user-defined variables must be declared in the post-processor
Program File before the first block. This is done for user-defined variables with the FORMAT
declaration statement, which is explained in Section 4.1. The formats of interactions variables are
set when they are defined in the INTERACTION statement. The format type may be any of those
listed in Section 4.1 and in Appendix B. Each format type is specified by the answers to the
DFPOST questions.

3.2 Modal & Non-Modal Status of Variables

The modal or non-modal status of variables will determine if and when they are sent to output.
When the formats for the 18 format types are set during the DFPOST stage in Section 3 of the
post-processor questions (see Appendix D), the last format option allows you to specify the format
type as modal or non-modal. The Character format type assigns a modal status, by default. In

3-2 Variables and Constants Cimatron GPP 12

3.1 Formats of Variable Values

addition, the status of all variables can be changed with the MODAL or NON-MODAL declaration
statement described in Sections 4.4 and 4.5.

An “on/off” indicator is kept for each variable. The system uses this indicator to determine whether
or not to send a variable value to output. When modal variables are assigned a new value they are
turned “on”. Only variables with “on” indicators will be sent to output. After a modal variable is
sent to output, its indicator is turned “off”. As a result, if a modal variable is sent to output and its
value is not changed, the next time the same name is encountered it will not be sent to output.

Non-modal variables are never turned “off”. They are sent to output any time their names are
encountered in the blocks as part of an OUTPUT statement.

The value of the modal variable has no impact on its operation. Whether the variable represents
text, a code or a numeric value, it will not affect the way the “on/off” indicator works.

3.3 Literal Constants

Text or codes that do not change may be inserted in an NC program. These literal constants can be
stated in the block layout by enclosing them in double quotes. The double quotes should be
preceded and followed by a space. The enclosed data will be sent to output as is.

Example: OUTPUT \J “T” CURR_TOOL “M66" ;

Both the letter T, and the code, M66, will be output because they appear within the double quotes.

3.4 Control Characters

When the constant is an ASCII control character, i.e., a combination of the <CTRL> key plus another
character, it is listed in the Post-processor Program File as a backslash (\) followed by the character.
It is not enclosed in parentheses.

Example: \J

This represents the <CTRL> key plus the character J, which in some systems, triggers a line feed
when it is followed by something.

In Cimatron GPP, you can also use the combination of the <CTRL> key and the plus sign (+) to
produce a line feed.

Example: \+

Cimatron GPP 12 Variables and Constants 3-3

3.3 Literal Constants

3.5 Special Constant – TAB_

Some controllers require that the output be in fixed columns. This may be achieved by sending the
special constant, TAB_ (TAB + underscore), to output. This will cause blanks to be inserted from
the current position to the next tab stop. When the TAB_ is used, tab stops must be defined in a
declaration statement before the block layouts.

Notes: • The number of TAB stops is limited to 20.

• The line length in the output file is limited to 160 characters.

Example: OUTPUT TAB_ X_HOME ;

In the example, before the value of the variable X_HOME is output, the tab position following the
current one will be found. These tab positions must have been declared in the SET_TABS
declaration statement before the blocks as described in Section 4.7.

If, on the other hand, your machine requires the <tab character> to be output, use the control
character \I (<CTRL> + I) instead. �

3-4 Variables and Constants Cimatron GPP 12

3.5 Special Constant – TAB_

S Chapter 4

Declaration Statements

The declaration statements which describe the initial operating environment must appear before the
first block. They define values which will be used within the blocks. The need to use a specific
declaration statement is often determined only when a block layout is customized.

Types of declaration statements available are:

1. FORMAT Assigns a format to one or more user-defined variables.

2. IDENTICAL Declares two or more variables as identical (i.e. sharing the
same value).

3. INTERACTION Defines an interaction variable, its format, its screen name
and its initial default value.

4. MODAL Defines system or user-defined variables as modal.

5. NON_MODAL Defines system or user-defined variables as non-modal.

6. NEW_LINE_IS Assigns a character which will trigger a sequence of
commands.

7. SET_TABS Sets tab positions for the output.

Each type of declaration statement should be on a separate line and followed by a semicolon (;). If
two statements of the same type are on the same line, they must be separated by a semicolon and a
space. Spaces are required between the statement name and the variable name(s) following it, and
between variables in a list.

Cimatron GPP 12 Declaration Statements 4-1

4.1 FORMAT

FORMAT is the name of the declaration statement and must be the first word on the line. The name
of the format type must follow the word FORMAT, be enclosed in parentheses and be preceded and
followed by a space. The variable(s) which are being defined follow, separated by spaces. System
variables appearing in the FORMAT statement, will be assigned this format type instead of the
default.

Example:

FORMAT (USER_1) XPOS XLIST [500] X_CURPOS $X;

In this example, the format type USER_1 is assigned to:

XPOS User defined variable
XLIST[500] Array of 500 User defined variables
X_CURPOS System variable (with a default COORDINATES format)
$X Tools/Cycles User defined variable.

Instead of USER_1, one of the 18 format options listed below can be used.

Available Format Types:

0. Character
1. Coordinates
2. Angles
3. Feed
4. Spindle_speed
5. Dwell
6. Sequencing
7. Tool
8.-17.User_[1-10]
18. Real

Character format may also be declared as a format type although it is not defined in the DFPOST
stage. All variables assigned the Character format type are modal, by default. The maximum
number of characters in a string is 20.

Format Options Defined for Each Format Type

1. Max. digits for integer part < >
2. Max. digits for fractional part < >
3. Min. digits for integer part < >
4. Min. digits for fractional part < >
5. Leading zeroes <NO,YES>
6. Trailing zeroes <NO,YES>
7. Character for the + sign < >
8. Character for the - sign < >
9. Character for decimal point < >
10. Use decimal point for whole numbers question <NO,YES>
11. Representation of value 0 < >
12. Modal value question <NO,YES>

4-2 Declaration Statements Cimatron GPP 12

4.1 FORMAT

Notes: • The DFPOST FORMAT “REAL” has been changed.

In the DFPOST, the Min/Max number of digits is “9" (9,9,... is the
most accurate number that can be defined in the DFPOST).

To allow the output of the full range of double-precision numbers,
the REAL FORMAT is defined internally as 14,14,1,1,.....

The Min/Max number of digits that appear in the DFPOST has no
effect on the FORMAT of REAL, however, all the other parameters
(e.g. leading zeroes, modal) influence the REAL FORMAT.

It is recommended to define the REAL format as:

....,YES,YES, _,.,YES,0.0,NO

• 0 Max. digits Min. digits 9

• - Max number of digits:

integer: number requiring more digits than specified, will
not be created and an error will appear.

fractional: digits after this place will be rounded.

- Min number of digits:

all the places from the last digit (not “0") to the
“Min number of digits” are filled with BLANKS.

- Leading/Trailing zeroes:

if equal to YES, instead of the BLANKS
mentioned above, ZEROES will be written.

format number output \J “A” A “,” ;

4,3,2,2,YES,YES A=1.5 A01.50,

4,3,2,2,NO ,NO A=1.5 A 1.5 ,

4,3,4,3,YES,YES A=1.5 A0001.500,

• Although it is possible to define an 18 digit number, only the first
14 non zero digits are taken into account.

Example:

The number 012345678.123456789 is represented internally as
12345678.123457...

• Variables that are used for calculations, or in expressions, should be
defined using the accepted characters:

1. Max. digits for integer part < >
2. Max. digits for fractional part < >
3. Min. digits for integer part < >
4. Min. digits for fractional part < >
5. Leading zeroes <NO,YES>
6. Trailing zeroes <NO,YES>
7. Character for the + sign + (or nothing)
8. Character for the - sign -
9. Character for decimal point .

Cimatron GPP 12 Declaration Statements 4-3

4.1 FORMAT

10. Use decimal point for whole numbers ? YES
11. Representation of value 0 0.0
12. Modal value ? <NO,YES>

• Integer number should be defined with trailing zeroes YES.

4.2 IDENTICAL

The IDENTICAL statement is used to save assignment operations. All variables appearing after the
IDENTICAL statement, will always have the same value. If one of them is updated by either the user
or the system, the others will automatically be updated.

Example: IDENTICAL X_CURPOS X_ENDPT;
IDENTICAL Y_CURPOS Y_ENDPT Y1 Y2 Y3;

4.3 INTERACTION

The INTERACTION statement is used to define up to 50 interaction variables. See Section 3 for a
detailed description. The name of the format type must follow the word INTERACTION, be
enclosed in parentheses and be preceded and followed by a space. The name it will have when it
appears in the interaction area of the screen follows, enclosed in quotation marks. Finally, its
internal name in the Post-processor Program File and an initial default value are stated, followed by
a semi-colon.

Example: INTERACTION (Coordinates) “ENTER_DELTA_Z” DZ = 10.0;

When the POSTPR function is run, ENTER_DELTA_Z = 10.000; will be one of the modal
variables. It may be changed or left as it is. The variable DZ may appear later in the Post-processor
Program File at which time its value may be changed again. The value it is assigned in POSTPR
will become the new default. The format of this variable is whatever was defined for Coordinates in
the DFPOST questions.

Notes: • Interaction variables of the “Coordinates” format are multiplied by
the units factor.

• The maximum number of characters in the interacting modals during
the POSTPR is 32. Therefore the string between the “ ” is limited
according to the format of the interaction variable:

REAL: MAX STRING = 15 - 19
INTEGER: MAX STRING =15 - 19
CHARACTER: MAX STRING = 9

• All variables are now displayed either as REAL numbers or as
INTEGERS. The REAL representation is always with 3 decimal
digits independent of the FORMAT defined in the DFPOST.

It is recommended that the FORMAT of the interaction numeric
variables be either INTEGER or a number with 3 decimal digits.

4-4 Declaration Statements Cimatron GPP 12

4.2 IDENTICAL

Example:

DFPOST FORMAT: USER_6: 2,1,2,1,NO,NO,....
USER_7: 1,5,1,5,NO,NO,....
USER_8: 4,3,1,1,NO,NO,....
USER_9: 3,3,1,1,NO,NO,....

.exf file: INTERACTION (USER_6) “INPUT” A = 1.1 ;
INTERACTION (USER_7) “INPUT” B = 1.1 ;
INTERACTION (USER_8) “INPUT” C = 1.1 ;
INTERACTION (USER_9) “INPUT” D = 1.1 ;

OUTPUT \J “A=” A “B=” B “C=” C “D=” D ;

POSTPR interaction:

The user types A=1.166 The display in the MODAL is A=1.166
The user types B=1.56789 The display in the MODAL is B=1.568
The user types C=7777.999 The display in the MODAL is C=7778.000
The user types D=125.747 The display in the MODAL is D=125.747

Output file:
A=1.2 B=1.56789 C=7778 D=125.747

Only the definition for variable D gives the correct result.

• In the external post (EXTPST), the interaction fields appear exactly
as defined in the DFPOST.

4.4 MODAL

Variables may be MODAL or NON-MODAL. Non-modal variables are never turned “off”. Modal
variables are turned “off” when their values are output and “on” again when they are assigned a
new value. They may be reset to “on” using the executable statements RESET or SET_ON, even
when they have not changed value. In addition, they may be turned “off” with the SET_OFF
statement even if their values have changed. Their “on/off” status affects if and when they may be
output. Modal and Non-modal variables are described in greater detail in Section 3.2.

All variables are assigned a modal or non-modal status according to their format type as defined in
the last format option question in the DFPOST stage. The MODAL declaration statement overrides
the modal status set by the FORMAT or INTERACTION statement. Appendix B contains a list of
Tool Path variables and the default format type for each.

Example: FORMAT (Coordinates) PECK;
MODAL PECK CYC_DWELL;

In the example above, the user-defined variable, PECK, and the Tool Path variable, CYC_DWELL,
are both declared to be modal. When it was defined in the FORMAT statement, PECK was assigned
the same format definition, including the modal setting, specified for Coordinates (Format type 1).
CYC_DWELL has the format defined for Dwell (Format type 5). After the MODAL statement, both
still have their original format definitions except for their modal/non-modal status. Now both are
modal.

A list of variable names may be included in one MODAL statement.

Cimatron GPP 12 Declaration Statements 4-5

4.4 MODAL

4.5 NON_MODAL

Example: FORMAT (Coordinates) PECK;
NON_MODAL PECK CYC_DWELL;

NON_MODAL declaration statements operate like MODAL statements.

The difference is that the mode is changed from modal to non-modal. In the example above, the
user-defined variable PECK, and the Tool Path variable CYC_DWELL, will both be non-modal even
though they were previously set as modal by their respective format types.

4.6 NEW_LINE_IS

The NEW_LINE_IS declaration statement defines the symbol which will trigger a procedure each
time it is encountered, and what that procedure will be. The statement itself is followed by a series
of statements which will be executed when the specified character is encountered in the OUTPUT
statement.

Example 1: NEW_LINE_IS ! ;
OUTPUT \J “N” SEQ ;
SEQ = SEQ + SEQINCR ;

In the example above, the exclamation point is declared to be the new line symbol. Every time it is
encountered, the procedure described in the following lines will be executed. A carriage return will
be performed (\J), and the literal constant (the character N) and the value of the user-defined
variable SEQ will be OUTPUT. Then, SEQ will be increased by the value of SEQINCR.

In the following block, the NEW_LINE_IS symbol appears three times. The procedure described
above will be performed after “(TEST1)” is output, after “G00 G90" is output and a third time, after
the literal constant, ”G55", is output.

Example 2: BEGINNING OF TAPE:
SEQ = 10; SEQINCR = 2; PROG = 1234;
OUTPUT “% \J ”P" PROG

“(TEST 1)”:
OUTPUT ! ;
OUTPUT “G00 G90" ! ”G55";
OUTPUT !;
OUTPUT ! “ ”;

The output file:

%
P1234 (TEST 1)
N10 G00 G90
N12 G55
N14

Notes: • The new line symbol should not be used with the print0...print10
commands. It is not recommended to use it with the print command.

• The new line procedure will not be activated unless an output should
be performed. In the example above, the second OUTPUT !;
statement did not activate the new line procedure.
If the output is the last output statement, it will activate the new line
procedure.

4-6 Declaration Statements Cimatron GPP 12

4.5 NON_MODAL

4.7 SET_TABS

Some controllers require that the output will be in fixed columns. The SET_TABS declaration
statement enables you to set the tab positions. Then, in a block, when the special constant TAB_ is
sent to output, blanks will be inserted from the current position to the next tab stop. The special
TAB_ constant is described in Section 3.5.

Notes: • The number of TAB stops is limited to 20.

• The line length in the output file is limited to 160 characters.

Example 1: SET_TABS 4 8 12 16;

In the above statement, TAB stops have been set at positions 4, 8, 12 and 16.

Example 2: OUTPUT \J “12345678901234567890";
OUTPUT \J TAB_ ”A" TAB_ “B” TAB_ “C” TAB_ “D”;
OUTPUT \J “*” TAB_ “A”;
OUTPUT \J “***” TAB_ “A”;
OUTPUT \J TAB_ TAB_ TAB_ TAB_ “D”;

The output file:

12345678901234567890
A B C D

* A
*** A

D

�

Cimatron GPP 12 Declaration Statements 4-7

4.7 SET_TABS

S Chapter 5

Executable Block Statements

Within each Post-processor Program File block it is possible to write executable statements which
use the Tool Path data created by the Cimatron NC system. These statements are composed of
operators, variables, constants and conditions. Sometimes declaration statements must be made
before the blocks, in order for the executable statement to be valid. Each executable block statement
must be followed by a semicolon (;).

The types of executable block statements available are:

1. KEEP Save a value for later use.

2. OUTPUT Output variable values, literal strings and/or other constants
such as NEW_LINE_IS and control characters.

3. PRINT
PRINT 1..PRINT10
PRINT0

Send variable values, literal strings and/or other constants, to
the screen and to a file having the extension .msg. Additional
PRINT statements are available that enable the user to select
the file extension.

4. Assignment Assign a value to a variable.

5. IF_SET, ELSE, END_IF Execute statements (Ex: OUTPUT) if the condition in
parentheses is true. If it is false execute the ELSE statements.

6. IF_EXISTS, ELSE,
END_IF

This IF statement checks the existence of TOOL/CYCLES
User defined parameters.

7. REPEAT, UNTIL Executed statements repeatedly, until the condition in
parentheses is true.

8. SET_ON
SET_OFF

Set a variable’s indicator to “on” or “off” without affecting
its value. (Used with modal variables).

9. CALL Call an external program for execution.

10. CONVERT Convert the internal representation of a variable to be the
same as the defined in the FORMAT.

11. CUT_FILE When this variable is SET_ON, the Gcode file is divided and
from this point the blocks are output to the next file (see
page 1-4 for file names).

These operators are described on the following pages. When a prior declaration statement must be
made, it is indicated.

Cimatron GPP 12 Executable Block Statements 5-1

5.1 KEEP

Example:

FEED:
KEEP MCH_FEED;

The system will only assign values which are needed. Sometimes, even though a value does not
seem to be needed immediately (it is not sent to output) it is desirable to save it for later use. This
can be indicated by the KEEP statement followed by a list of the variables to be kept.

ALL_VAR may be used in the KEEP statement to KEEP all variables, system and user-defined.

5.2 OUTPUT

Values, control characters, literal strings, TAB_ and NEW_LINE_IS triggers will be written to an
output program only when their names are stated in the OUTPUT statement. If a variable name does
not appear, it will be ignored. When a variable is output its indicator is set to “off”, if it is modal.

Example: TOOL CHANGE:
OUTPUT ! TOOL_NAME;

In the example, the OUTPUT applies to the exclamation mark and the variable TOOL_NAME. The
exclamation mark must have been defined as a NEW_LINE_IS character in the declaration statement
at the beginning of the Post-processor Program File, in addition to the executable statements that it
triggers. A list of variables may be included in the same OUTPUT statement.

5.3 PRINT

The PRINT statement operates like the OUTPUT statement. It uses the same variables and changes the modal
indicator in the same way. However, it writes to the screen and to a file named:

<part name>.<tool path 1>. msg

Variables do not have to be included in an OUTPUT statement to be in a PRINT statement. A list of
variables may be included in the same PRINT statement.

Example: TOOL CHANGE:
OUTPUT ! TOOL_NAME;
PRINT “Milling tool ” TOOL_NAME “is installed.”;

In this example, after the name of the tool is output, the sentence declaring that the tool is installed
will be displayed on the screen and added to the .msg file.

Additional PRINT statements are available, PRINT1.......PRINT10, that operate in a similar manner
to PRINT. These statements, however, send variables to a file named:

<part name>.<tool path 1>.<extension>

where <extension> may either be the default (default of PRINT1 is .pr1), or may be any name
selected by the user.

PRINT0 is similar to PRINT, however, it always writes to the file print0.txt in the current directory.

5-2 Executable Block Statements Cimatron GPP 12

5.1 KEEP

5.4 The Assignment Statement

The equal sign may be used in combination with the standard calculator operators and functions to
assign the value on the right of the equal sign to the value on the left. A space must both precede
and follow the equal sign. Only one assignment statement is allowed in each line.

Variable values may be adjusted by using them in combination with arithmetic operators, numbers
and other variable values. Each operator must be preceded and followed by a space. Refer to
Appendix K for a list of operators and functions which may be used. Example 1 is a combined
arithmetic and assignment statement. HVAL is assigned a value equivalent to the value of
CURR_TOOL plus 50.

Example 1: HVAL = CURR_TOOL + 50 ;

Example 2: SEQUENCE = SEQUENCE + SEQINCR ;

Example 3: X = “A string of_characters.”

In example 2 the value of the variable value SEQINCR is added to the previous value of
SEQUENCE to give SEQUENCE a new value.

In example 3, X becomes equal to the characters enclosed in the quotation marks but ignoring the
spacing (i.e. “Astringof_characters”).

When the value of a modal variable is changed as a result of the assignment statement, its indicator
is set to “on”. However, if the statement does not result in any change, the assignment statement
will not turn it “on”. Modal and non-modal variables are described in Section 3.2.

Notes: • All variables must have the same format, except in the case where
there are only two variables involved, i.e. VAR1 = VAR2.

• It is the responsibility of the user to make sure that no
mathematically impossible operations, such as division by zero, will
result.

Division by zero may be avoided by using an IF_SET statement. See
next section.

Example: IF_SET (X _GT_ O) Y = A/X ;
END_IF ;

5.5 IF_SET (Conditional Execution)

Sometimes the decision to execute statements depends on whether or not the indicator of a variable
is “on”, i.e. its value has been reset, or on some logical condition. These conditions can be checked
and the execution of the appropriate statements can be triggered by the IF_SET statement.

It is also possible to specify an alternative action that should be performed if the indicator of the
variable is “off” or if the logical condition is false. This is done by including an ELSE clause in the
IF_SET statement.

Cimatron GPP 12 Executable Block Statements 5-3

5.4 The Assignment Statement

All IF_SET statements must be terminated by END_IF.

Example 1: IF_SET (X_CURPOS) OUTPUT $ “X” X_CURPOS ; END_IF ;

Example 2: IF_SET (X_CURPOS) OUTPUT $ “X” X_CURPOS ;
ELSE X = X + 1 ;
END_IF ;

In the examples, if the indicator of the Tool Path variable X_CURPOS is “on”, then the literal
constant X and the value of X_CURPOS will be sent to output. In addition, the new line character
(in this case, the dollar sign $) will trigger the series of operations which was defined with the
NEW_LINE_IS declaration statement before the blocks.
In the first example, if the indicator of X_CURPOS is “off” the executable statements which follow
will be ignored. In the second statement, the statement following ELSE will be executed, i.e., X will
be incremented by 1.

Any one of the following logical arguments may be used in an IF_SET statement:

(variable _EQ_ variable) Checks if two numeric or character variables are identical.

(variable _NE_ variable) Checks if two numeric or character variables are not identical.

(variable _GT_ variable) Checks if the first numeric variable value is greater than the
second.

(variable _LT_ variable) Checks if the first numeric variable value is less than the
second.

(variable _LE_ variable) Checks if the first numeric variable value is less than or equal
to the second.

(variable _GE_ variable) Checks if the first numeric variable value is greater than or
equal to the second.

Notes: • Comparison of two variables in the CHARACTER format is not
supported. If a variable in the CHARACTER format must be checked,
it should be compared to a string. For example:

IF_SET (FILE_EQ_ “any_file”)

The comparison to string is case sensitive and includes blanks
(except for trailing blanks).

• Comparison of variables that have a different format is not
recommended.

Example: IF_SET (X _EQ_ Y)
OUTPUT \J “X & Y = ” X_CURPOS ;

ELSE
OUTPUT \J “X = ” X_CURPOS “ Y = ” Y_CURPOS ;

END_IF ;

In the example, if X_CURPOS and Y_CURPOS are equal (e.g. 1234), the output will be:

• the literal constant X & Y =

• and the value of the Tool Path variable X_CURPOS.

5-4 Executable Block Statements Cimatron GPP 12

5.5 IF_SET (Conditional Execution)

The output: X & Y = 1234.
If they are not equal (e.g. 1234,12), the output will be:

• the literal constant X =,

• the value of X_CURPOS,

• the literal constant Y =

• and the value of Y_CURPOS.

The output: X = 1234 Y = 12

Comparison is in two steps:

First Step

Check if the two numbers are equal.

This is done for ALL options: EQ, NE, GT, LT, GE, LE

Comparing two variables:

Two strings are compared. When comparing numbers that have the same value but different format,
the result might be unexpected.

Example:

DFPOST FORMAT: USER_1: 3,3,3,3,NO,NO,....
USER_2: 4,4,4,4,NO,NO,....

.exf file: FORMAT (USER_1) A ;
FORMAT (USER_2) B ;
A = 1.123 ;
B = 1.123 ;
IF_SET (A _EQ_ B)

OUTPUT \J A “ is equal to” b ;
ELSE

OUTPUT \J A “ is NOT equal to” b ;
END_IF ;

During the compilation (DFEXF), the following warning will appear:

***WARNING IN LINE 18
IF_SET (A _EQ_ B)

MIXED FORMATS ARE USED IN ONE EXPRESSION
RESULT MAY BE INCORRECT.

Output file: 1.123 is NOT equal to 1.123

Cimatron GPP 12 Executable Block Statements 5-5

5.5 IF_SET (Conditional Execution)

Comparing a variable with a number:

The variable is rounded according to the FORMAT and then compared with the number.

Second Step

If the two numbers are not equal, they are compared in double-precision to check which is larger.

IF_SET statements may be nested in different ways, Some examples follow:

IF_SET IF_SET IF_SET

IF_SET IF_SET IF_SET

IF_SET END_IF ELSE

END_IF IF_SET END_IF

END_IF END_IF ELSE

END_IF END_IF END_IF

5.6 IF_EXISTS (Conditional Execution)

When handling TOOLS/CYCLES User define variables, it is important to know whether a specific
variable exists. A TOOL/CYCLE may be from a previous version or contain a different user.def
record.

Example:

IF_EXISTS ($MAXSPEED)

IF_SET (SPIN_SPEED _GT $MAXSPEED)

SPIN_SPEED = $MAXSPEED;

END_IF;

END_IF;

5-6 Executable Block Statements Cimatron GPP 12

5.6 IF_EXISTS (Conditional Execution)

5.7 REPEAT, UNTIL (Loops)

When it is desirable to execute certain statements repeatedly until a specific condition is met, the
REPEAT, UNTIL may be used. One of the logical arguments described in the previous section for
use with the IF_SET statement, or a variable name may be used to set the condition under which the
executable statements will be repeated. In the case of the variable name, the statements will be
executed if the indicator of the variable is “on”.

The statements to be executed repeatedly are listed after the REPEAT statement. The condition
follows the UNTIL statement.

Example: CIRCULAR MOTION:
. . .
. . .
IND = 0 ;
XNEW = X_CURPOS ;
YNEW = Y_CURPOS ;
REPEAT

IND = IND + 1 ;
XNEW = XNEW + XDEL ;
YNEW = YNEW + YDEL ;
OUTPUT $ LIN_MOV ;
IF_SET (XNEW) OUTPUT “X” XNEW ; END_IF ;
IF_SET (YNEW) OUTPUT “Y” YNEW ; END_IF ;

UNTIL (IND_EQ_NSEG) ;

In the example, NSEG represents the number of linear segments which represent the arc (i.e., the
number of times XDEL and YDEL increments and translation are to be applied to XNEW and
YNEW). The linear movement will be repeated until the counter IND is equal to NSEG.

5.8 Changing the “on/off” Indicators – SET_ON and SET_OFF

There are times when it is desirable to change the “on/off” indicator of a variable. One example is
when the value of the variable should be output even if it did not change since the last time it was
output (i.e., its indicator is still “off”).

The indicator may be reset to “on” with the SET_ON statement. If the indicator is “on” and it
should be off, the SET_OFF statement may be used. These statements may include one variable or a
list of variables.

ALL_VAR may be used to change the indicators of all variables simultaneously.

Example 1: SET_ON X_ENDPT Y_ENDPT Z_ENDPT ;

Example 2: SET_ON ALL_VAR ;

Example 3: SET_OFF X_CURPOS ;

In Example 1, the indicators of three variables are set to “on”. In Example 2, the indicators of all
variables are set to “on”. In Example 3, the indicator of one variable is turned “off”.

Cimatron GPP 12 Executable Block Statements 5-7

5.7 REPEAT, UNTIL (Loops)

5.9 CALLing an External Program

The CALL statement may be used to insert up to 50 different external programs in each
Post-processor Program File. This is particularly useful when calculations must be performed on
variables. The calculation can be prepared externally in a program. Then the name of the program
can be included in a CALL statement where the calculations are to be performed.

The name of the program to be inserted, a list of input variables and a list of output variables are
included in the CALL statement. The formats of all user-defined input and output variables must be
defined at the beginning of the Post-processor Program File.

Example: FORMAT (COORDINATES) XLAST YLAST ;
FORMAT (CHARACTER) CHAR1 ;
FORMAT (USER_1) FACTOR ;
FORMAT (USER_2) RESLT ;
.
.
.
LINEAR MOTION:

OUTPUT $ LIN_MOV ;
XLAST = X_CURPOS ;
YLAST = Y_CURPOS ;
FACTOR = 100 ;
CALL “PROG1" INPAR XLAST YLAST FACTOR ;

OUTPAR RESLT FACTOR CHAR1 ;
OUTPUT $ ” The result of the calculation is “CHAR1 ;
OUTPUT $ RESLT ” “ FACTOR ;
.

.

In the example, when LINEAR MOTION is encountered in the Tool Path, after the one OUTPUT
statement and three assignment statements are executed, the external program PROG1 will be
called. Three variables will be used as input to this program - XLAST, YLAST and FACTOR. Three
variables will be used as output from PROG1 - RESLT, FACTOR and CHAR1. After the process
described in PROG1 is executed, two more OUTPUT statements will be executed.

Refer to Section 1.3 and Appendix K (Preparing an External Program Monitor Routine and Sample
External Program Monitor Routine and Subroutines) for a detailed explanation of how to prepare an
external program for inclusion in the Post-processor Program File.

Notes: • The maximum length if the program name and the INPAR/OUTPAR
variable names is 6, according to FORTRAN limitations.

• System variables may be used also, providing they do not exceed the
above limitations.

• Arrays cannot be used in a CALL statement.

5-8 Executable Block Statements Cimatron GPP 12

5.9 CALLing an External Program

5.10 CONVERT

The new function CONVERT was added to round a double-precision number and to verify the
number of decimal digits.

Syntax:

CONVERT INVAR OUTVAR NUM ;

Input: INVAR: Any variable in the EXF file (i.e.: X_CURPOS, MYVAR).

Output: OUTVAR: Any variable in the EXF file (including the input variable).
This variable is equal to INVAR, except that it is rounded to
the NUMth decimal digit.

NUM: Number of decimal digits as defined in the FORMAT of
INVAR in the DFPOST.

Notes: • All variables must appear.

• The order of the variables must be as described above.

Usage:

Since most of the calculations in the Post should be as accurate as possible, variables should
normally not be CONVERTed (e.g. rotation angles, DFPOST scale factor).

In some cases, calculations should be done on the data sent to the machine (e.g. the distance
between two points).

In these cases, the variables should be CONVERTed, so their internal representation will fit their
output format.

Example: - calculate the distance between two machine coordinates:

DFPOST FORMAT: 3,3,3,3,YES,YES

Before CONVERT:

TOOLPATH

coordinate
G-code

Internal

representation

XOLD 100.0004 100.000 100.00040....

XNEW 109.9996 110.000 109.99960....

XNEW-XOLD 9.9992
9.999

(should be 10.000)
9.99920....

CONVERT XOLD XOLD N ;
CONVERT XNEW XNEW N

Cimatron GPP 12 Executable Block Statements 5-9

5.10 CONVERT

After CONVERT:

TOOLPATH

coordinate
G-code

Internal

representation

XOLD 100.0004 100.000 100.00000....

XNEW 109.9996 110.000 100.00000....

XNEW-XOLD 10.0000 10.000 10.00000....

Notes: • Note the difference in the internal representation.

• The representation of OUTVAR will be according to its FORMAT. If
the FORMAT of INVAR and OUTVAR is the same, OUTVAR will
“look” like INVAR. Internally, however, OUTVAR will have only
zeroes after the last visible digit.

Limitations:

The convert function can be used only for variables where the total number of digits (as defined in
the DFPOST) does not exceed 9.

The total number of digits is: “Max integer part” + “Max fractional part”.

Example:

FORMAT
Internal representation

INVAR OUTVAR
NUM

4,2 13.200000... 13.2000... 2

4,2 13.210000... 13.2100... 2

4,3 413.210060... 413.2100... 3

5,8 3.200000... ––> error

5,8 19413.213060... ––> error

5.11 CUT_FILE

The CUT_FILE variable enables you to divide the Gcode file into several OUTPUT files. This
mechanism is the same as the maximum number of blocks in the DFPOST (see Appendix D,
section D.1), however, the division may be done at any point during the post processing (for
example OUTPUT each tool path to a different file).

The usage of this division mechanism requires the use of the blocks:

BEGINNING OF TAPE:
AFTER CUT:
END OF TAPE:
BEFORE CUT:

�

5-10 Executable Block Statements Cimatron GPP 12

5.11 CUT_FILE

S Chapter 6

Using Subroutines

When tool motions are created using PROFILE, POCKET or CLEAR, the identical sequence of tool
movements is often repeated many times. In these cases, the Output Program File can be
considerably shortened, by the use of subroutines.

Subroutines may not be created for sequences of tool movements which are created by other
Cimatron NC machining functions. All lines of code for repeated sequences in those functions
are included each time they occur.

To create subroutines for PROFILE, POCKET or CLEAR procedures, include the SUBROUTINE
CALL block in the Post-processor Program File. If the SUBROUTINE CALL block is not included,
then the Output Program File will include all the lines of code for every layer.

If the SUBROUTINE CALL is invoked, the first layer of a procedure will be written in a subroutine.
When subsequent layers in the same procedure are encountered, they are skipped. There is no need
to write them in the Output Program file again. The same process is repeated for all PROFILE,
POCKET or CLEAR procedures in the Tool Path.

These subroutines may be listed after the main program in the Output Program File in the order of
their creation or in separate files. Question number 3 in section number 1 of the DFPOST questions
asks if you want to write the subroutines in separate files. If YES is selected, the system
automatically assigns a name to the file in which each subroutine is created. The name is the same
as that of the Output Program File plus an extension consisting of the character S, and a number.
Numbers are assigned in the order that subroutines are created.

Example: Output Program File: <part>.<tool path>.<post-processor>
First Subroutine: <part>.<tool path>.<post-processor>.S1
Second Subroutine: <part>.<tool path>.<post-processor>.S2

Executable statements may be included in the SUBROUTINE CALL block. These statements will be
executed in the main program before a subroutine is called.

Statements to be executed at the beginning of a subroutine may be included in the BEGINNING OF
SUB block. Statements may be executed after the layer is closed by including them in the END OF
SUB block.

Statements to be included after returning to the main program, may be included in the
SUBROUTINE RETURN: block.

Cimatron GPP 12 Using Subroutines 6-1

Example: SUBROUTINE CALL:
SUBNUM = SUB_NUMBER + 7999 ;
OUTPUT $ “ G65 P” SUBNUM “ Z” LAYER_Z ;

BEGINNING OF SUB:
SUBFLG = 1 ;
SET_ON ZDM ;
OUTPUT “%” ;
OUTPUT \J “O” SUBNUM ;
OUTPUT $ “ G90 G” ZDM ;
SET_ON MCH_FEED ;
OUTPUT $ “ G1 Z#26 F” MCH_FEED ;

END OF SUB:
OUTPUT $ “ G40" $ ” M99" ;
SUBFLG = 0 ;

SUBROUTINE RETURN:
SET_ON LIN_MOV CIRC_MOV MCH_FEED ;
SET_ON X_CURPOS Y_CURPOS Z_CURPOS ;

Note: • Subroutines are not created in the following cases:

- Functions that were changed in EDITTP/MANUAL

- PROFILE and POCKET functions with a DRAFT ANGLE

- PROFILE function with a STOCK WIDTH.

- PROFILE function with the option B-DIRECTION.

- The system variable NO_SUBROUT is SET_OFF. �

6-2 Using Subroutines Cimatron GPP 12

S Chapter 7

System Flags

Sometimes it is desirable to control the basic behavior of the Post-processor within the program file.

Several system flags/variables can be SET_ON/SET_OFF or be initialized and influence the flow
of the Post-processor.

Variable Default Block Usage

CIR_INTERP SET_ON
ORIGIN CHANGE:

BEGINNING OF TAPE:

If SET_OFF;

all circular motions will be broken into linear

motions according to the tolerance defined in

the DFPOST circular motion section.

NO_SUBROUT SET_OFF
ORIGIN CHANGE:

BEGINNING OF TAPE:

If SET_ON

subroutines will not be created.

TRANS_MATX

TRANS_MATY

TRANS_MATZ

0.0

ORIGIN CHANGE:

BEGINNING OF TAPE:

TOOL CHANGE:

The TRANS_MAT values are added to any

coordinates before they are put into the

program file.

ROT_MAT1

ROT_MAT2

ROT_MAT3

ROT_MAT4

ROT_MAT5

ROT_MAT6

ROT_MAT7

ROT_MAT8

ROT_MAT9

1,0

0.0

0.0

0.0

1.0

0.0

0.0

0.0

1.0

ORIGIN CHANGE:

BEGINNING OF TAPE

The ROT_MAT rotation matrix multiplies any

coordinates before they are put into the

program file.

CUT_FILE SET_OFF ALL BLOCKS
If SET_ON, OUTPUT file is truncated, see

section 5.11.

�

Cimatron GPP 12 System Flags 7-1

S Chapter 8

External POSTPR (EXTPST)

POSTPR is the Cimatron function that is used to run post-processors.

EXTPST (EXTernal PoSTpr) is an external program that invokes POSTPR without entering
Cimatron.

The advantages of using EXTPST include:

• lower overheads (Cimatron is not entered, therefore the process is much faster),

• EXTPST may be run in batch,

• a session may be saved and run again.

There are two of ways of running EXTPST:

• Interactively

• Input File

Interactively

When running EXTPST interactively, the user is prompted for values for various parameters (part
name, post name, tool path, UCS, etc.) to provide all the information required to run the
post-processor. If at least one appropriate value exists, a list of possible values is displayed.

A parameter may be skipped if its value is unique (there is only one tool path), or if you want its
default value.

Syntax: extpst

Cimatron GPP 12 EXTPST 8-1

Example of invoking extpst interactively

Interaction Explanation

ENTER PART NAME?
aa Part name is compulsory.

Loading part file...

SELECT POST FROM THE LIST BELOW:
1: compar
2: mill51
3: rol
1

Post name is compulsory, with one exception - if there is
only one post in the <root_cad>/post directory.

SELECT MACSYS FROM THE LIST BELOW:
1: MAC1
2: MAC2
1

MACSYS name is omitted if only one MACSYS exists.

SELECT TOOL PATH(S) FROM THE LIST BELOW:
1: TP1
2: TP2
3: COM
4: RT1
1,3,2

Tool paths are defined by their names; their order of
appearance is important. This parameter may be skipped if
only one tool path exists.

CONFIRM TOOL PATH SELECTION (Y/N, <CR>=Y):
TP1 COM TP2

ENTER MACHINE ZERO (<CR> = 0.0,0.0,0.0):

Machine zero coordinates. The default is (0.0,0.0,0.0).

MATCH UCS(S) WITH THE ORIGINS OF THE NC CONTROLLER: (NUMBERS SEPARATED BY
COMMAS, <CR> = AS DISPLAYED) U1(A)=1, U2(A)=2, U3(A)=3

This a list of UCS’s used in the selected tool path(s), matched
with the origins of the NC controller. All UCS’s should be in
the list. If the list is omitted, the UCS’s will be matched in
the order they are used in the tool paths. See the function
TP.MNGR >> POSTPR in the NC manual for a more
detailed description.

INTERACTION VARIABLES: (<CR> - VALUES OK)
1. X-SCALE = 1.0
2. Y-SCALE = 1.0
3. Z-SCALE = 1.0
1
X-SCALE=
2

Interaction variables are referred to by the order of their
definition in the exf file. The order these variables are entered
is not important. Variables that are not included in the list are
set to their default values. This is also true if the
INTERACTION parameter is omitted altogether.

INTERACTION VARIABLES: (<CR> - VALUES OK)
1. X-SCALE = 2.0

8-2 EXTPST Cimatron GPP 12

2. Y-SCALE = 1.0
3. Z-SCALE = 1.0

TO SAVE THE INTERACTION SESSION, TYPE FILE NAME EXTENSION: (<CR> = do not save)

If you intend to run EXTPST later, using the same
parameters, you can save this session on a file (journal). It
will be used afterwards as an Input File (See the next
operation mode). The file name of the journal is in the same
format as other post-processor files:

part.tp.post.jrn_ext.
(In our case aa.tp1.compar.sav)
If there is no journal parameter, the journal file will not be
created.

SELECT FILES YOU WANT TO BE SENT TO THE SCREEN (<CR> = NONE):
1: Output program file
2: Tools file
3: Origins file
4: Cycles file

One or more of the output files may be displayed on the
screen as well as written to the disk. For example:

TOSCREEN: OUTPUT,TOOLS
The files will be shown individually. TOSCREEN is an
optional parameter. You may, however, find it useful while
working on a post-processor program, as everything written to
a file is echoed simultaneously on the screen, so you can see
exactly where an error occurs.

———— OUTPUT TO FILE aa.tp1.compar

Do you want to continue? (Y/n)

End of Interactive method.

Input file

This method of operation enables you to run sessions identical to previously run post-processors.
An input file may be created, as shown above, in the Interactive mode, thus saving a particular
session, or the file may be created and edited manually.

Syntax: extpst -log file-name

The rules that govern the format of this method are:

a) Each parameter must be on a new line.

b) Saving a file in this operation mode is meaningless.

c) Comments are allowed, marked by “#”.

d) “-” (minus) is a continuation character.

e) If parameters are omitted, default values are used.

Cimatron GPP 12 EXTPST 8-3

Two examples of an Input file

aa.tp1.compar.sav file:

PART: aa
POST: compar
MACSYS: MAC1
TP: TP1, TP2
MACH0: 0.000000,0.000000,0.000000
UCS:MACSYS=1
INTERACTION: -
1: 2.0 #X-SCALE -
2: 1.0 #Y-SCALE -
3: 1.0 #Z-SCALE

Manually edited file:

PART: aa
POST: compar
MACSYS: MAC1
TP: TP1, TP2
INTERACTION: -
1: 2.0

Example of invoking extpst from an Input file

extpst -log aa.tp1.compar.sav

Examples of parameter names and their values are as shown below

PART:part_name
POST:post_name
MACSYS: macsys_name
TP:tool_path1,tool_path2,...
MACH0:x,y,z
UCS:{ucsname=index}
INTERACTION:{1:value1,2:value2,...}
JOURNAL:jrn_extension
TOSCREEN:OUTPUT,{TOOLS[,]ORIGINS[,]CYCLES}

�

8-4 EXTPST Cimatron GPP 12

S Appendix A

Blocks and Their Variables

System-assigned block names are listed below with the tool path variables which may be set in
each. (Variable values are set only if they are required.) The first line of each block is the block
name. The numbers in the right-hand column refer to sections of the DFPOST questions which are
in Appendix D.

Block Name Tool Path Variables Description & DFPOST question or Tool
Path value which sets the variable.

In all blocks:

CUT_FILE SET_ON this flag will divide the G-code file

BLOCK_NUM The current block number as appears in the
TP_LIST.

DBL_QUOTE The character: “

AXIS CHANGE:

AXIS_NUM The number of sets of axes (coordinate systems)
used in the current procedure.

BEGINNING OF PROC:

ANGLE_INCR All relevant procedures - Parallel - angle
increment.

CHECK_OFST Offset of the check surfaces

CHECK_TOL Tolerance of the check surfaces

CONT_OFST Offset of the 1st contour.

CONT_TOL Tolerance of the contours

DEL_Z_UP * The DEL Z UP procedure.

DOWN_STEP * The procedure DOWN STEP value.

END_ANGLE All relevant procedures - Parallel - end angle.

I_START,J_START,K_START I, J and K components of the vector which, in
wire-EDM machining and 5X milling, describes
the initial direction of the tool axis.

LEAD_ANGLE All relevant procedures - leading angle.

MILL_ANGLE All relevant procedures - Parallel - milling angle.

NUM_CONT All Relevant Procedures - Number of contours.

NUM_CSRF All Relevant Procedures - Number of Check
surfaces.

Cimatron GPP 12 Blocks and Variables A-1

* Only for POCKET and PROFILE procedures.

Block Name Tool Path Variables Description & DFPOST question or Tool
Path value which sets the variable.

NUM_LAYERS Number of layers in the procedures. Mill motions
only. 0 = no layers.

NUM_P2SRF All Relevant Procedures - Number of Part2
surfaces.

NUM_PASS SURMILL/SURCLR - Num Of Passes.

NUM_PSRF All Relevant Procedures - Number of Part
surfaces.

NUM_SPRING Number of spring passes.

MOVMNT_NUM Number of movement blocks in the current
procedure (not correct while using subroutines,
quadrants and linear approximation to circles).

ORBIT_OFS WCUT - Orbit Offset

OSIDE_STEP WCUT - Between layers / Side Step

PART_OFST Part Surface Offset

PART_TOL Part Surface Tolerance

PLATFORM_ Platform type: DOS,NT,SUN,SGI,HP

PROC_CMNT The procedure comment.

PROC_NAME The name of the current procedure (e.g. PROFIL,
DRILL).

PROC_NUM The procedure number created by the system
when the procedure was first defined (This
number cannot be modified by the user. In each
TOOL PATH the PROC_NUM is re-initialized).

PROC_SCLP All Relevant Procedures - Scallop

PROC_TRJ All Relevant Procedures - Parallel/Spiral/Radial.

PROC_UCSN1 Procedure UCS name (256 characters).

PROC_UCSN2 Procedure UCS name (256 characters).

PROC_UCSN3 Procedure UCS name (256 characters).

PROC_UCSN4 Procedure UCS name (256 characters).

PROC_UCSN5 Procedure UCS name (256 characters).

PROC_UCSN6 Procedure UCS name (256 characters).

PROC_UCSN7 Procedure UCS name (256 characters).

PROC_UCSN8 Procedure UCS name (256 characters).

PROC_UCSN9 Procedure UCS name (256 characters).

PROC_UCSN10 Procedure UCS name (256 characters).

PROC_UCSN11 Procedure UCS name (256 characters).

PROC_UCSN12 Procedure UCS name (256 characters).

PROC_UCSN13 Procedure UCS name (256 characters).

A-2 Blocks and Variables Cimatron GPP 12

Block Name Tool Path Variables Description & DFPOST question or Tool
Path value which sets the variable.

SIDE_STEP * The procedure SIDE STEP value.

START_ANGL All relevant procedures - Parallel - start angle.

STARTS_NUM Total number of starts. Lathe/Thread tool motions
only.

STK_WIDTH PROFILE - Stock Width

TILT_ANGLE All relevant procedures - tilting angle.

TRANSF_NUM The number of transformations.

UNIBI_DIR PROFILE - Unidir/Bidir.

WITH_STOCK WCUT - With/Without Stock.

X_INTER,Y_INTER,Z_INTER X, Y, and Z intermediate points.

X_START,Y_START,Z_START Current (Start) position in the original Tool Path
coordinate system.

Z_DOWN * The procedure Z DOWN value.

Z_UP * The procedure Z UP value.

BEGINNING OF SUB: (Milling only)

BEGINNING OF TAPE:

CURR_ORIG Number of origin on NC controller to which the
current origin corresponds.

DATE_SDD Current date: day

DATE_SMM Current date: month

DATE_SYY Current date: year

EXT_POST internal / external post

IMS_PRJN1 IMS project path (256 characters)

IMS_PRJN2 IMS project path (256 characters)

IMS_PRJN3 IMS project path (256 characters)

IMS_PRJN4 IMS project path (256 characters)

IMS_PRJN5 IMS project path (256 characters)

IMS_PRJN6 IMS project path (256 characters)

IMS_PRJN7 IMS project path (256 characters)

IMS_PRJN8 IMS project path (256 characters)

IMS_PRJN9 IMS project path (256 characters)

IMS_PRJN10 IMS project path (256 characters)

IMS_PRJN11 IMS project path (256 characters)

IMS_PRJN12 IMS project path (256 characters)

IMS_PRJN13 IMS project path (256 characters)

Cimatron GPP 12 Blocks and Variables A-3

Block Name Tool Path Variables Description & DFPOST question or Tool
Path value which sets the variable.

FACTOR_ The FACTOR variable in the DFPOST

I_ORIGIN,J_ORIGIN,K_ORIGIN I, J and K components of the vector which, in
wire-EDM and 5X milling, describes the
orientation of the active coordinate system in the
original Tool Path coordinate system.

MACSYS_NAM The MACSYS name.

NODE_ID The WorkStation Node_ID

NUM_ORIGS Number of origins (coordinate systems) used in
all the Tool5 Paths.

PART_NAME The name of the part.

PART_PATH Path name- Just the path, without the name itself.
Characters 1-20.

PART_PATH2 Path name - characters 21-40.

PART_PATH3 Path name - characters 41-60.

PFM_UNITS The PFM units

PLATFORM_ The platform in use.

POST_NAME Current Post Processor name

TIME_SHH Current time: hour

TIME_SMM Current time: minute

TIME_SSS Current time: second

USER_NAME Give the user name as an output

.X_MACH, Y_MACH, Z_MACH The machine zero as was input during the
POSTPR interaction.

X_CURPOS,Y_CURPOS,
Z_CURPOS

Current (Home) position in the active coordinate
system.

X_HOME,Y_HOME,Z_HOME Home position in the active coordinate system.

X_ORIGIN,Y_ORIGIN,
Z_ORIGIN

Origin of active coordinate system in the original
Tool Path coordinate system.

BEGINNING OF TLPATH:

TP_CMNT Toolpath comment

TP_NAME The tool path name.

TP_TYPE Tool path main type: MILL, LATHE, WIRE,
PUNCH

TP1_TYPE Tool path sub-type

TPNM_LOWER Toolpath name in lowercase letters.

A-4 Blocks and Variables Cimatron GPP 12

Block Name Tool Path Variables Description & DFPOST question or Tool
Path value which sets the variable.

CIRCULAR MOTION:
CIRC_MOV

Circular movement code set in section 8, question
1 - clockwise question 2 - counterclockwise.

ABS_ANG (ST_ANG + ARC_ANG)

ARC_ANG Delta angle in degrees.

CIRC_TOL Contols tolerance of linear approximation of
circles (overwrites value that appears in DFSTRD)

END_ANG End angle in degrees, between 0 and 360. (0 <
END_ANG < 360.0)

RADIUS_ Radius of the arc.

ST_ANG Start angle in degrees.

X_ENDPT, Y_ENDPT,
Z_ENDPT

Endpoint in the active coordinate system.

X_CENTER,Y_CENTER,
Z_CENTER

Center in the active coordinate system.

COOLANT: (Not applicable in wire-EDM)

MCH_COOL Coolant codes. - Set by section 6, questions 4, 5,
6, & 7

CONSTANT SPEED: (Lathe only)

CUT_SPEED The velocity of the cutting (Vc).

SPIN_DIR Spin direction code. - Set by section 6, question 1
- clockwise, question 2 - counterclockwise,
question 3 - stop

CUTTER COMPENSATION: (Not applicable in wire-EDM)

CUTCOM_OFF Cutter compensation “off” code. - Set by section
8, question 9

CUTCOM_ON Cutter compensation “on” code - Set by section 8,
question 10 - left, question 11 - right

CYCLE:

CYC_2PLN Not in use.

CYC_CLEAR Cycle clear-coordinate of Z on clearance plane.

CYC_CODE Cycle code. - Set in section 9.

CYC_DEPTH Cycle depth coordinate value.

CYC_DWELL Cycle dwell time in hundredths of a second.

CYC_DZINIT The DRILL procedure DEL INIT value.

CYC_PECK Cycle PECK value.

CYC_REDUC Cycle DECREASE value.

CYC_RETR Cycle retract code.

Cimatron GPP 12 Blocks and Variables A-5

Block Name Tool Path Variables Description & DFPOST question or Tool
Path value which sets the variable.

CYC_TIMES Number of times to peck.

CYC_XSHFT Cycle shift along the X axis.

CYC_YSHFT Cycle shift along the Y axis.

CYCLE_1..12 Number of active cycle.

X_CURPOS,Y_CURPOS,
Z_CURPOS

Current position in the active coordinate system.

DWELL: (Not applicable in wire-EDM)

MCH_DWELL Dwell value in hundredths of a second.

END OF FILE:

END OF PROC:

END OF SUB: (Milling only)

END OF TAPE:

END OF TOOL PATH:

FEED: (Not applicable in wire-EDM)

MCH_FEED Feed value in millimeters/second.

GROOVE CYCLE:

CYC_DEPTH The total depth of the area to be machined.

CYC_PECK Cycle PECK value.

CYC_REDUC Cycle DECREASE value.

FACE_GROV Face groove cycle.

GROV_DEL The distance above the material at which the tool
will slow its rapid approach.

GROV_STEP The width of each groove pass.

GROV_WIDTH The total width of the area to be machined.

INNER_GROV Inner groove cycle.

OUTER_GROV Outer groove cycle.

X_ENDPT, Y_ENDPT End position in the active coordinate system.

X_START, Y_START Start position in the active coordinate system.

INSERT WITH (SEQUENCING):

INS_STR Insert string.

INSERT WITHOUT (SEQUENCING):

INS_STR Insert string.

A-6 Blocks and Variables Cimatron GPP 12

Block Name Tool Path Variables Description & DFPOST question or Tool
Path value which sets the variable.

LINEAR MOTION:
LIN_MOV

Linear movement code. - Set in section 7,
question 1.

COMP_3X 3-D cutter compensation.

I_COORD, J_COORD,
K_COORD

I, J and K components of the vector. In
wire-EDM, describes the direction of the wire. In
case of 5 axis milling, describes the direction of
the tool axis.

LINE_ANG Angle the line makes with the X axis.

LINE_LENG Length of the linear motion.

SRF_NORX
SRF_NORY
SRF_NORZ

X, Y, and Z components of the surfaces’ normal.

X_CURPOS,Y_CURPOS,
Z_CURPOS

Current position in the active coordinate system.

MESSAGE:

MESS_STR Message string.

NIBBLE: (Punch only)

NIB_PITCH Pitch value.

NURBS MOTION: Nurbs movement code. - Set in section 9,
question 1.

CNTRL_NUM Number of control points for current spline

CNTRL_X-X Coordinate of the control number in spline block.

CNTRL_Y-Y Coordinate of the control number in spline block.

CNTRL_Z-Z Coordinate of the control number in spline block.

KNOT Knot value of each control point

NRB_INTERP Spline interpolation mode

NURBS_DEG Degree of current spline

NURBS_MOV Spline movement code

NURBS_TOL Current spline tolerance

WEIGHT Weight of each control point

ORIGIN CHANGE:

CIR_INTERP Circular interpolation code. - Set by user. “On”
by default.
On = Circular interpolation.
Off = Linear interpolation.

CURR_ORIG Number of origin on NC controller to which the
current origin corresponds.

Cimatron GPP 12 Blocks and Variables A-7

Block Name Tool Path Variables Description & DFPOST question or Tool
Path value which sets the variable.

I_ORIGIN, J_ORIGIN, K_ORIGIN I, J and K components of a unit vector in the Z
axis direction of the UCS.

IX_ORIG,JX_ORIG,KX_ORIG I, J and K components of a unit vector in the X
axis direction of the UCS.

MI_ORIGIN, MJ_ORIGIN,
MK_ORIGIN

Current UCS origin in macsys coordinates, vector
components.

MIX_ORIGIN, MJX_ORIGIN,
MKX_ORIGIN

Change in X axis between previous and current
UCS, vector components.

MX_ORIGIN, MY_ORIGIN,
MZ_ORIGIN

Coordinates of current UCS origin in macsys
coordinates.

NO_SUBROUT Subroutine creation code. - Set by user. “Off” by
default.
On = Subroutine will be created.
Off = Subroutine will not be created.

ROT_MAT1 . . .9 Numbers in the rotation matrix. Default values
define a unit matrix. May be redefined by the
user in assignment statements.

TRANS_MATX
TRANS_MATY
TRANS_MATZ

X, Y, and Z translation vectors. All system
variables with FORMAT = COORDINATES will
be shifted by these values.

X_ORIGIN,Y_ORIGIN,
Z_ORIGIN

Origin of active coordinate system in the
MACSYS coordinate system.

SPIN: (Not applicable in wire-EDM)

SPIN_DIR Spin direction code. - Set by section 6, question 1
- clockwise question 2 - counterclockwise
question 3 - stop

SPIN_SPEED Spin speed in revolutions per minute.

START STRING:
SEGMT_NUM Number of line segments in string.

START THREAD:

CURR_START Number of the current start. (In Lathe/Thread
only.)

STOP POINTS: (Wire-EDM only)

SUBROUTINE CALL: (Milling only)

LAYER_Z The value of Z for the current layer.

A-8 Blocks and Variables Cimatron GPP 12

Block Name Tool Path Variables Description & DFPOST question or Tool
Path value which sets the variable.

NUM_LAYERS Total number of layers in the procedure, i.e. the
number of times the subroutine will be called.

SUB_NUMBER Number of the subroutine being called.

SUBROUTINE RETURN: (Milling only)

THREAD CANNED CYCLE:

END_ANG Retract angle in degrees.

FACE_THRD Face thread.

FIN_BYAREA Downstep defined by area for finish machining.

FIN_BYSTEP Downstep defined by distance for finish
machining.

FIN_DEPTH Total depth for finish machining.

FIN_DSTEP Downstep for finish machining.

FIN_MNSTEP Minimum downstep for finish machining.

FIN_NORMAL Normal (perpendicular) entrance mode for finish
machining.

FIN_ZIGZAG Zigzag entrance mode for finish machining.

INNER_THRD Inner thread.

LINE_ANG Angle the thread makes with the Z axis of the
machine.

LINE_LENG Length of the linear motion.

OUTER_THRD Outer thread.

RUF_BYAREA Downstep defined by area for rough machining.

RUF_BYSTEP Downstep defined by distance for rough
machining.

RUF_DEPTH Total depth for rough machining.

RUF_DSTEP Downstep for rough machining.

RUF_MNSTEP Minimum downstep for rough machining.

RUF_NORMAL Normal (perpendicular) entrance mode for rough
machining.

RUF_ZIGZAG Zigzag entrance mode for rough machining.

ST_ANG Approach angle in degrees.

THRD_DEPTH Total rough + finish machining depth.
(RUF_DEPTH + FIN_DEPTH)

X_ENDPT, Y_ENDPT End position in the active coordinate system.

X_START, Y_START Start position in the active coordinate system.

Cimatron GPP 12 Blocks and Variables A-9

Block Name Tool Path Variables Description & DFPOST question or Tool
Path value which sets the variable.

THREAD CYCLE:

END_ANG Retract angle in degrees.

FACE_THRD Face thread.

FIN_BYAREA Downstep defined by area for finish machining.

FIN_BYSTEP Downstep defined by distance for finish
machining.

FIN_DEPTH Total depth for finish machining.

FIN_DSTEP Downstep for finish machining.

FIN_MNSTEP Minimum downstep for finish machining.

FIN_NORMAL Normal (perpendicular) entrance mode for finish
machining.

FIN_ZIGZAG Zigzag entrance mode for finish machining.

INNER_THRD Inner thread.

LINE_ANG Angle the thread makes with the Z axis of the
machine.

LINE_LENG Length of the linear motion.

OUTER_THRD Outer thread.

RUF_BYAREA Downstep defined by area for rough machining.

RUF_BYSTEP Downstep defined by distance for rough
machining.

RUF_DEPTH Total depth for rough machining.

RUF_DSTEP Downstep for rough machining.

RUF_MNSTEP Minimum downstep for rough machining.

RUF_NORMAL Normal (perpendicular) entrance mode for rough
machining.

RUF_ZIGZAG Zigzag entrance mode for rough machining.

ST_ANG Approach angle in degrees.

THRD_DEPTH Total rough + finish machining depth.
(RUF_DEPTH + FIN_DEPTH)

X_ENDPT, Y_ENDPT End position in the active coordinate system.

X_START, Y_START Start position in the active coordinate system.

THREAD STEP:(Lathe/Thread only)

STEP_INCR Step increment.

STEP_TYPE Thread step code. - 1 = Pitch, 2 = Lead, 3 =
Threads, per inch, 4 = Variable pitch, 5 = Variable
lead, 6 = Variable threads per inch

STEP_VALUE Pitch or Lead size.

A-10 Blocks and Variables Cimatron GPP 12

Block Name Tool Path Variables Description & DFPOST question or Tool
Path value which sets the variable.

TOOL CHANGE:

CON_ANG Tool’s conic angle

CURR_NAME, NEXT_NAME Current and next tool names.

CURR_TOOL, NEXT_TOOL Current and next holder numbers.

E_LENGTH Distance between tool axis and circle center.

HOLDER_DIA Mill tool Holder Diameter (-dia = not in use)

TOOL_CMNT Tool’s comment

TOOL_MAT Tool’s material

TRANS_MATX
TRANS_MATY
TRANS_MATZ

X, Y, and Z translation vectors. All system
variables with FORMAT = COORDINATES will
be shifted by these values.

X_AFTR_TCH
Y_AFTR_TCH
Z_AFTR_TCH

Next X,Y,Z values after tool change. The next
point in the ToolPath after a tool is changed at
least once.

Note: • To enable the machining of multiple identical parts, when the last tool
change is reached, NEXT_TOOL and NEXT_NAME will be set from the
first tool.

(Milling Tools)
CLEAR_LENG Distance between holder and tool tip.

CUT_LENGTH Length of cutting edge of tool.

DIA_COMP Used only when cutter compensation is “on”.

DIAMETER_ Tool diameter.

FIXT_COMP Fixture compensation index.

GAUGE_LEN Distance between tool tip and pivot point.

HOLD_BOT01..10 Holder Bottom radius (holders numbered 1 to 10)

HOLD_CON01..10 Holder Conic height (holders numbered 1 to 10)

HOLD_NUM Number of holders in the current tool.

HOLD_TOP01..10 Holder Top radius (holders numbered 1 to 10)

HOLD_TOT01..10 Holder Total height (holders numbered 1 to 10)

LENG_COMP Length compensation index.

SHANK_BOT Shank Bottom radius

SHANK_CON Shank Conic height

SHANK_TOP Shank Top radius

SHANK_TOT Shank Total height

SPNDL_BOT Spindle Bottom radius

SPNDL_CON Spindle Conic height

SPNDL_TOP Spindle Top radius

Cimatron GPP 12 Blocks and Variables A-11

Block Name Tool Path Variables Description & DFPOST question or Tool
Path value which sets the variable.

SPNDL_TOT Spindle Total height

TEETH_NUM Number of teeth in tool.

TOOL_RAD Tool corner radius.

(Mill/Drill and Lathe/Drill Tools)
CLEAR_LENG Distance between holder and the tool tip.

CUT_LENGTH Length of the cutting edge of the tool.

DIAMETER_ Tool diameter.

GAUGE_LEN Distance between the tool tip and the pivot point.

TOOL_ANGLE The tip angle of the tool.

(Punch Tools)
CUT_LENGTH
(Types 1 and 2 only)

Length of the cutting edge of the tool.

CUT_WIDTH
(Types 1 and 2 only)

The width of the tool.

DIAMETER_ (Type 1 only) Tool diameter.

OVERLAP_
(Types 1 and 2 only)

Overlap between successive tool strokes.

SCALLOP_
(Types 2 and 3 only)

Height of material left between successive tool
strokes.

TOOL_ANGLE
(Types 1 and 2 only)

Angle the longest side of the tool makes with the
tool axis.

TOOL_TYPE Code indicating type of tool. - 1 = Rectangular 2
= Oval 3 = Round

(Lathe Tools)
CUT_WIDTH Tool nose width.

FACE_ANGLE Tool face angle.

HOLD_LENG Holder length.

HOLD_WIDTH Holder width.

TOOL_ANGLE Tool back angle.

TOOL_RAD Tool nose radius.

(Lathe/Thread and Lathe/Groove Tools)
AXIS_ANGLE Tool axis angle.

CUT_LENGTH Length of cutting edge of tool.

CUT_WIDTH Width of tool.

GROV_CNTRL Control point of groove tool. 1=center, 2=left, 3=right.

HOLD_LENG Holder length.

A-12 Blocks and Variables Cimatron GPP 12

Block Name Tool Path Variables Description & DFPOST question or Tool
Path value which sets the variable.

HOLD_WIDTH Holder width.

TOOL_ANGLE In groove, leading angle.

TOOL_RAD In groove - tool corner radius. In thread - radius
or base.

(Wire-EDM Tools)
REGSTR_1 AGIE T or Makino E

REGSTR_2 AGIE P

REGSTR_3 AGIE D or Makino D (offset direction may be
found by the sign of REGSTR_3)

REGSTR_4 AGIE S

WINT_1 Charmilles G27

WINT_2 Charmilles G28

WINT_3 Charmilles G29

WINT_4 Charmilles G30

WINT_5 Charmilles G28G29

WINT_6 Charmilles G29G30

WINT_7 Charmilles G32

WINT_8 Charmilles G38

WINT_9 Charmilles G39

WINT_10 Charmilles G45

WINT_11 Charmilles G46

WINT_12 Charmilles G60

WINT_13 Charmilles G61

WINT_14 Charmilles G62

WINT_15 Charmilles G63

WREAL_1 Charmilles C for G32

WREAL_2 Charmilles K for G32

WREAL_3 Charmilles X for G32

WREAL_4 Charmilles Y for G32

WREAL_5 Charmilles R for G32

WREAL_6 Charmilles A for G38 & G39

TOOL CHANGE MESSAGE:

TRANSFORMATION:

TRF_MAT1 Transformation rotation matrix 1

TRF_MAT2 Transformation rotation matrix 2

Cimatron GPP 12 Blocks and Variables A-13

Block Name Tool Path Variables Description & DFPOST question or Tool
Path value which sets the variable.

TRF_MAT3 Transformation rotation matrix 3

TRF_MAT4 Transformation rotation matrix 4

TRF_MAT5 Transformation rotation matrix 5

TRF_MAT6 Transformation rotation matrix 6

TRF_MAT7 Transformation rotation matrix 7

TRF_MAT8 Transformation rotation matrix 8

TRF_MAT9 Transformation rotation matrix 9

TRF_VECX Transformation matrix for X axis

TRF_VECY Transformation matrix for Y axis

TRF_VECZ Transformation matrix for Z axis

WIRE: (Wire-EDM only)

Z SURFACE:

Z_CURPOS Drilling surface level.

�

A-14 Blocks and Variables Cimatron GPP 12

S Appendix B

Formats for Variables

The format types for variables are:

0. Character
1. Coordinates
2. Angles
3. Feed
4. Spindle_speed
5. Dwell
6. Sequencing
7. Tool
8.-17. User_1-User_10 (Not used as default for system variables.)
18. Real (Not used as default for system variables.)

Types 1 through 18 are set in Section 3 of the DFPOST questions. 0 Character is modal by default
and does not need to be set.
A list of tool path variables, their default format types and the blocks in which their values are set
are provided below in alphabetical order.

Tool Path Default Block(s) in Which
Variable Description Format Value is Set

Type

ABS_ANG Start angle + Delta angle 2 CIRCULAR MOTION:

ANGLE_INCR All relevant procedures - 2
Parallel - angle increment

BEGINNING OF PROC

ARC_ANG Arc angle 2 CIRCULAR MOTION:

AXIS_ANGLE Tool axis angle 2 TOOL CHANGE:

AXIS_NUM Number of axes being used 6 AXIS CHANGE:

BEGINNING OF TAPE:

BLOCK_NUM Current block number as appears in 6
the TP_LIST

All Blocks

CHECK_OFST Check surfaces offset 1 BEGINNING OF PROC

CHECK_TOL Check surfaces tolerance 1 BEGINNING OF PROC

CIR_INTERP Circular interpolation mode 7 ORIGIN CHANGE

CIRC_MOV Circular movement code 0 CIRCULAR MOTION:

CIRC_TOL Controls tolerance of linear
approximation of circles (overwrites
value that appears in DFSTRD)

CIRCULAR MOTION:

CLEAR_LENG Distance between holder & tool tip 1 TOOL CHANGE:

Cimatron GPP 12 Formats for Variables B-1

Tool Path Default Block(s) in Which
Variable Description Format Value is Set

Type

CNTRL_NUM Number of control points for current
spline.

NURBS MOTION:

CNTRL_X-X Coordinate of the control number in
spline block

NURBS MOTION:

CNTRL_Y-Y Coordinate of the control number in
spline block

NURBS MOTION:

CNTRL_Z-Z Coordinate of the control number in
spline block

NURBS MOTION:

COMP_3X 3-D cutter compensation 7 LINEAR MOTION:

CON_ANG Tool’s conic angle 2 TOOLS

CONT_OFST 1st contour’s offset 1 BEGINNING OF PROC

CONT_TOL Contours tolerance 1 BEGINNING OF PROC

CURR_NAME Current tool holder name 0 TOOL CHANGE:

CURR_ORIG Controller/Cimatron origin no. 7 ORIGIN CHANGE:

BEGINNING OF TAPE:

CURR_START Number of current start 7 START THREAD:

CURR_TOOL Current tool holder number 7 TOOL CHANGE:

CUT_FILE set_on this flag will divide the G-code file ALL BLOCKS

CUT_LENGTH Length of cutting edge of tool 1 TOOL CHANGE:

CUT_SPEED Velocity of cutting (Vc) 1 CONSTANT SPEED:

CUT_WIDTH Width of the tool 1 TOOL CHANGE:

CUTCOM_OFF Cutter Compensation off code 0 CUTTER COMPENSATION:

CUTCOM_ON Cutter Compensation on code 0 CUTTER COMPENSATION:

CYC_2PLN Not in use. 1 CYCLE:

CYC_CLEAR Cycle clear height 1 CYCLE:

CYC_CODE Cycle code 0 CYCLE:

CYC_DEPTH Cycle depth increment 1 CYCLE:

GROOVE CYCLE:

CYC_DWELL Cycle dwell time 5 CYCLE:

CYC_DZINIT The DRILL procedure DEL INIT value 1 CYCLE:

CYC_PECK Cycle PECK value 1 CYCLE:

GROOVE CYCLE:

CYC_REDUC Cycle DECREASE value 1 CYCLE:

GROOVE CYCLE:

B-2 Formats for Variables Cimatron GPP 12

Tool Path Default Block(s) in Which
Variable Description Format Value is Set

Type

CYC_RETR Cycle retract code 0 CYCLE:

CYC_TIMES Number of pecks/cycle 7 CYCLE:

CYC_XSHFT Cycle shift along the X axis 1 CYCLE:

CYC_YSHFT Cycle shift along the Y axis 1 CYCLE:

CYCLE_1 Spot Drill 7 CYCLE:

CYCLE_2 High Speed Peck 7 CYCLE:

CYCLE_3 Left Hand Tapping 7 CYCLE:

CYCLE_4 Fine Boring 7 CYCLE:

CYCLE_5 Counter Boring 7 CYCLE:

CYCLE_6 Deep Hole Peck 7 CYCLE:

CYCLE_7 Tapping 7 CYCLE:

CYCLE_8 Boring 7 CYCLE:

CYCLE_9 Bore + Spindle Stop 7 CYCLE:

CYCLE_10 Back Boring 7 CYCLE:

CYCLE_11 Bore + Dwell + Manual 7 CYCLE:

CYCLE_12 Bore + Dwell + Feed 7 CYCLE:

DATE_SDD Current date: day 6 BEGINNING OF TAPE

DATE_SMM Current date: month 6 BEGINNING OF TAPE

DATE_SYY Current date: year 6 BEGINNING OF TAPE

DBL_QUOTE The character: “ 0 ALL BLOCKS

DEL_Z_UP Procedure DEL Z UP 1 BEGINNING OF PROC:

DIA_COMP Diameter compensation index 1 TOOL CHANGE:

DIAMETER_ Tool diameter 1 TOOL CHANGE:

DOWN_STEP The procedure DOWN STEP value 1 BEGINNING OF PROC:

E_LENGTH Distance between tool axis and circle 1
center

TOOL CHANGE:

END_ANG End angle 2 CIRCULAR MOTION:

THREAD CYCLE:

END_ANGLE All relevant procedures 2
Parallel - end angle 6

BEGINNING OF PROC

EXT_POST internal / external post 6 BEGINNING OF TAPE

THREAD CANNED CYCLE:

FACE_ANGLE Tool face angle 2 TOOL CHANGE:

FACE_GROV Face groove 7 GROOVE CYCLE:

Cimatron GPP 12 Formats for Variables B-3

Tool Path Default Block(s) in Which
Variable Description Format Value is Set

Type

FACE_THRD Face thread 7 THREAD CYCLE:

THREAD CANNED CYCLE:

FACTOR_ The FACTOR variable in the DFPOST 1 BEGINNING OF TAPE

FIN_BYAREA Downstep by area - fine 7 THREAD CYCLE:

THREAD CANNED CYCLE:

FIN_BYSTEP Downstep by distance - fine 7 THREAD CYCLE:

THREAD CANNED CYCLE:

FIN_DEPTH Depth for fine machining 1 THREAD CYCLE:

THREAD CANNED CYCLE:

FIN_DSTEP Downstep for fine machining 1 THREAD CYCLE:

THREAD CANNED CYCLE:

FIN_MNSTEP Minimum downstep - rough machining 1 THREAD CYCLE:

THREAD CANNED CYCLE:

FIN_NORMAL Perpendicular entrance - fine 7 THREAD CYCLE:

THREAD CANNED CYCLE:

FIN_ZIGZAG Zigzag entrance for fine machining 7 THREAD CYCLE:

THREAD CANNED CYCLE:

FIXT_COMP Fixture compensation index 1 TOOL CHANGE:

GAUGE_LEN Gauge length of tool 1 TOOL CHANGE:

GROV_CNTRL Control point of groove tool 6
1=center, 2=left, 3=right

TOOL CHANGE:

GROV_DEL Slow down distance in approach 1 GROOVE CYCLE:

GROV_STEP Width of each groove pass 1 GROOVE CYCLE:

GROV_WIDTH Total width of machined area 1 GROOVE CYCLE:

HOLD_BOT01..10 Holder Bottom radius 7 TOOL CHANGE :

HOLD_CON01..10 Holder Conic height 7 TOOL CHANGE :

HOLD_LENG Holder length 1 TOOL CHANGE:

HOLD_NUM Number of holders in the current tool. 1 TOOL CHANGE :

HOLD_TOP01..10 Holder Top radius 7 TOOL CHANGE :

HOLD_TOT01..10 Holder Total height 7 TOOL CHANGE :

HOLD_WIDTH Holder width 1 TOOL CHANGE:

HOLDER_DIA Mill tool Holder Dia. (-dia=not in use) 1 TOOLS

I_COORD I component of tool axis/wire vector 1 LINEAR MOTION:

I_ORIGIN Origin, I vector component 1 BEGINNING OF TAPE:

ORIGIN CHANGE:

B-4 Formats for Variables Cimatron GPP 12

Tool Path Default Block(s) in Which
Variable Description Format Value is Set

Type

I_START Initial direction, I vector component 1 BEGINNING OF PROC:

IMS_PRJN1 IMS project path (256 characters) 0 BEGINNING OF TAPE:

IMS_PRJN2 IMS project path (256 characters) 0 BEGINNING OF TAPE:

IMS_PRJN3 IMS project path (256 characters) 0 BEGINNING OF TAPE:

IMS_PRJN4 IMS project path (256 characters) 0 BEGINNING OF TAPE:

IMS_PRJN5 IMS project path (256 characters) 0 BEGINNING OF TAPE:

IMS_PRJN6 IMS project path (256 characters) 0 BEGINNING OF TAPE:

IMS_PRJN7 IMS project path (256 characters) 0 BEGINNING OF TAPE:

IMS_PRJN8 IMS project path (256 characters) 0 BEGINNING OF TAPE:

IMS_PRJN9 IMS project path (256 characters) 0 BEGINNING OF TAPE:

IMS_PRJN10 IMS project path (256 characters) 0 BEGINNING OF TAPE:

IMS_PRJN11 IMS project path (256 characters) 0 BEGINNING OF TAPE:

IMS_PRJN12 IMS project path (256 characters) 0 BEGINNING OF TAPE:

IMS_PRJN13 IMS project path (256 characters) 0 BEGINNING OF TAPE:

INNER_GROV Inside groove 7 GROOVE CYCLE:

INNER_THRD Inside thread 7 THREAD CYCLE:

THREAD CANNED CYCLE:

INS_STR Insert string 0 INSERT WITH:

INSERT WITHOUT:

IX_ORIG I vector component of the X direction 1 ORIGIN CHANGE

J_COORD J component of tool axis/wire vector 1 LINEAR MOTION:

J_ORIGIN Origin, J vector component 1 BEGINNING OF TAPE:

ORIGIN CHANGE:

J_START Initial direction, J vector component 1 BEGINNING OF PROC:

JX_ORIG J vector component of the X direction 1 ORIGIN CHANGE

K_COORD K component of tool axis/wire vector 1 LINEAR MOTION:

K_ORIGIN Origin, K vector component 1 BEGINNING OF TAPE:

ORIGIN CHANGE:

K_START Initial direction, K vector component 1 BEGINNING OF PROC:

KNOT Knot value of each control point NURBS MOTION:

KX_ORIG K vector component of the X direction 1 ORIGIN CHANGE

LAYER_NUM Number of layers in the proc 1 BEGINNING OF PROC:

LAYER_Z Z value of current layer 1 SUBROUTINE CALL:

Cimatron GPP 12 Formats for Variables B-5

Tool Path Default Block(s) in Which
Variable Description Format Value is Set

Type

LEAD_ANGLE All relevant procedures - leading angle 2 BEGINNING OF PROC:

LENG_COMP Length compensation index 1 TOOL CHANGE:

LIN_MOV Linear movement code 0 LINEAR MOTION:

LINE_ANG Angle of the line with the X axis 2 LINEAR MOTION:

THREAD CYCLE:

THREAD CANNED CYCLE:

LINE_LENG Length of the linear motion 1 LINEAR MOTION:

THREAD CYCLE:

THREAD CANNED CYCLE:

MACSYS_NAM MACSYS name 0 BEGINNING OF TAPE:

MCH_COOL Coolant code 0 COOLANT:

MCH_DWELL Dwell time 5 DWELL:

MCH_FEED Feed rate 3 FEED:

MESS_STR Message string 0 MESSAGE:

MI_ORIGIN Current UCS origin, i vector component 1
in macsys coordinates

ORIGIN CHANGE:

MILL_ANGLE All relevant procedures - 2
Parallel - milling angle

BEGINNING OF PROC

MIX_ORIGIN Difference in i vector component 1
between current and previous
UCS X axis, in macsys coordinates

ORIGIN CHANGE:

MJ_ORIGIN Current UCS origin, j vector component 1
in macsys coordinates

ORIGIN CHANGE:

MJX_ORIGIN Difference in j vector component 1
between current and previous
UCS X axis, in macsys coordinates

ORIGIN CHANGE:

MK_ORIGIN Current UCS origin, k vector component 1
in macsys coordinates

ORIGIN CHANGE:

MKX_ORIGIN Difference in k vector component 1
between current and previous
UCS X axis, in macsys coordinates

ORIGIN CHANGE:

MOVMNT_NUM Number of movement blocks in proc. 6 BEGINNING OF CURRENT
PROCEDURE

PROC:

MX_ORIGIN Current UCS X coordinate in macsys 1
coordinates

ORIGIN CHANGE:

MY_ORIGIN Current UCS Y coordinate in macsys 1
coordinates.

ORIGIN CHANGE:

B-6 Formats for Variables Cimatron GPP 12

Tool Path Default Block(s) in Which
Variable Description Format Value is Set

Type

MZ_ORIGIN Current UCS Z coordinate in macsys 1
coordinates

ORIGIN CHANGE:

NEXT_NAME Next tool holder name 0 TOOL CHANGE:

NEXT_TOOL Next tool holder number 7 TOOL CHANGE:

NIB_PITCH Nibbling pitch 1 NIBBLE:

NO_SUBROUT Subroutine mode 7 ORIGIN CHANGE

NODE_ID The WorkStation Node_ID 0 BEGINNING OF TAPE

NRB_INTERP Spline interpolation mode 1 NURBS MOTION:

NUM_CONT All Relevant Procedures - 6
Number of contours

BEGINNING OF PROC

NUM_CSRF All Relevant Procedures - 6
Number of Check surfaces

BEGINNING OF PROC

NUM_LAYERS Number of layers in procedure 6 SUBROUTINE CALL:

NUM_ORIGS Total number of origins used 7 BEGINNING OF TAPE:

NUM_PASS SURMILL/SURCLR - Num Of Passes 6 BEGINNING OF PROC

NUM_P2SRF All Relevant Procedures - 6
Number of Part2 surfaces

BEGINNING OF PROC

NUM_PSRF All Relevant Procedures - 6
Number of Part surfaces

BEGINNING OF PROC

NUM_SPRING Number of spring passes 6 BEGINNING OF PROC:

NURBS_DEG Degree of current spline 1 NURBS MOTION:

NURBS_MOV Spline movement code 0 NURBS MOTION:

NURBS_TOL Current spline tolerance 1 NURBS MOTION:

NURBS MOTION
START; END

Qualifiers of the NURBS MOTION
block.

NURBS MOTION:

ORBIT_OFS WCUT - Orbit Offset 1 BEGINNING OF PROC

OSIDE_STEP WCUT - Between layers / Side Step 1 BEGINNING OF PROC

OUTER_GROV Outside groove 7 GROOVE CYCLE:

OUTER_THRD Outside thread 7 THREAD CYCLE:

THREAD CANNED CYCLE:

OVERLAP_ Overlap between tool strokes 1 TOOL CHANGE:

PART_NAME The name of the part 0 BEGINNING OF TAPE:

PART_OFST Part Surface Offset 1 BEGINNING OF PROC

PART_PATH Path name, characters 1-20 0 BEGINNING OF TAPE:

PART_PATH2 Continuation of path name, char 21-40 0 BEGINNING OF TAPE:

Cimatron GPP 12 Formats for Variables B-7

Tool Path Default Block(s) in Which
Variable Description Format Value is Set

Type

PART_PATH3 Continuation of path name, char 41-60 0 BEGINNING OF TAPE:

PART_TOL Part Surface Tolerance 1 BEGINNING OF PROC

PFM_UNITS PFM units 0 BEGINNING OF TAPE

PLATFORM_ Platform type: DOS,NT,SUN,SGI,HP 0 BEGINNING OF PROC

POST_NAME current Post Processor name 0 BEGINNING OF TAPE

PROC_CMNT Procedure comment 0 BEGINNING OF PROC:

PROC_NAME The name of the current procedure 0 BEGINNING OF PROC:

PROC_NUM Procedure sequence number 6 BEGINNING OF PROC:

PROC_SCLP All Relevant Procedures - Scallop 1 BEGINNING OF PROC:

PROC_TRJ All Relevant Procedures - 6
Parallel/Spiral/Radial

BEGINNING OF PROC:

PROC_UCSN1 Procedure UCS name (256 characters) 0 BEGINNING OF PROC

PROC_UCSN2 Procedure UCS name (256 characters) 0 BEGINNING OF PROC

PROC_UCSN3 Procedure UCS name (256 characters) 0 BEGINNING OF PROC

PROC_UCSN4 Procedure UCS name (256 characters) 0 BEGINNING OF PROC

PROC_UCSN5 Procedure UCS name (256 characters) 0 BEGINNING OF PROC

PROC_UCSN6 Procedure UCS name (256 characters) 0 BEGINNING OF PROC

PROC_UCSN7 Procedure UCS name (256 characters) 0 BEGINNING OF PROC

PROC_UCSN8 Procedure UCS name (256 characters) 0 BEGINNING OF PROC

PROC_UCSN9 Procedure UCS name (256 characters) 0 BEGINNING OF PROC

PROC_UCSN10 Procedure UCS name (256 characters) 0 BEGINNING OF PROC

PROC_UCSN11 Procedure UCS name (256 characters) 0 BEGINNING OF PROC

PROC_UCSN12 Procedure UCS name (256 characters) 0 BEGINNING OF PROC

PROC_UCSN13 Procedure UCS name (256 characters) 0 BEGINNING OF PROC

RADIUS_ Radius of the arc 1 CIRCULAR MOTION:

REGSTR_1 AGIE T or Makino E 6 TOOL CHANGE:

REGSTR_2 AGIE P 6 TOOL CHANGE:

REGSTR_3 AGIE D or Makino D 6 TOOL CHANGE:

REGSTR_4 AGIE S 6 TOOL CHANGE:

ROT_MAT1. . .9 Rotation matrix elements 1 ORIGIN CHANGE:

RUF_BYAREA Downstep by area - rough 7 THREAD CYCLE:

THREAD CANNED CYCLE:

B-8 Formats for Variables Cimatron GPP 12

Tool Path Default Block(s) in Which
Variable Description Format Value is Set

Type

RUF_BYSTEP Downstep by distance - rough 7 THREAD CYCLE:

THREAD CANNED CYCLE:

RUF_DEPTH Depth for rough machining 1 THREAD CYCLE:

THREAD CANNED CYCLE:

RUF_DSTEP Downstep for rough machining 1 THREAD CYCLE:

THREAD CANNED CYCLE:

RUF_MNSTEP Minimum downstep for rough machining 1 THREAD CYCLE:

THREAD CANNED CYCLE:

RUF_NORMAL Perpendicular entrance - rough 7 THREAD CYCLE:

THREAD CANNED CYCLE:

RUF_ZIGZAG Zigzag entrance - rough machining 7 THREAD CYCLE:

THREAD CANNED CYCLE:

SCALLOP_ Height of material left between strokes 1 TOOL CHANGE:

SEGMT_NUM Number of line segments in string 1 START STRING:

SHANK_BOT Shank Bottom radius 7 TOOL CHANGE :

SHANK_CON Shank Conic height 7 TOOL CHANGE :

SHANK_TOP Shank Top radius 7 TOOL CHANGE :

SHANK_TOT Shank Total height 7 TOOL CHANGE :

SIDE_STEP The procedure SIDE STEP value 1 BEGINNING OF PROC:

SPIN_DIR Spindle direction 0 SPIN:

SPIN_SPEED Spindle speed 4 SPIN:

SPNDL_BOT Spindle Bottom radius 7 TOOL CHANGE :

SPNDL_CON Spindle Conic height 7 TOOL CHANGE :

SPNDL_TOP Spindle Top radius 7 TOOL CHANGE :

SPNDL_TOT Spindle Total height 7 TOOL CHANGE :

SRF_NORX X component of the surfaces’ normal 1 LINEAR MOTION:

SRF_NORY Y component of the surfaces’ normal 1 LINEAR MOTION:

SRF_NORZ Z component of the surfaces’ normal 1 LINEAR MOTION:

ST_ANG Start angle 2 CIRCULAR MOTION:

THREAD CYCLE:

THREAD CANNED CYCLE:

START_ANGL All relevant procedures - 2
Parallel - start angle

BEGINNING OF PROC:

STARTS_NUM Total number of lathe/thread starts 7 BEGINNING OF PROC:

Cimatron GPP 12 Formats for Variables B-9

Tool Path Default Block(s) in Which
Variable Description Format Value is Set

Type

STEP_INCR Step increment 1 THREAD STEP:

STEP_TYPE Thread step code (1 to 6) 7 THREAD STEP:

STEP_VALUE Pitch or lead size 1 THREAD STEP:

STK_WIDTH PROFILE - Stock Width 1 BEGINNING OF PROC

SUB_NUMBER Number of current subroutine 6 SUBROUTINE CALL:

TEETH_NUM Number of teeth in tool 7 TOOL CHANGE:

THRD_DEPTH Total thread machining depth 1 THREAD CYCLE:

THREAD CANNED CYCLE:

TILT_ANGLE All relevant procedures - tilting angle 2 BEGINNING OF PROC

TIME_SHH Current time: hour 0 BEGINNING OF TAPE

TIME_SMM Current time: minute 0 BEGINNING OF TAPE

TIME_SSS Current time: second 0 BEGINNING OF TAPE

TOOL_ANGLE Angle of the tool 2 TOOL CHANGE:

TOOL_CMNT Tool’s comment 0 TOOLS

TOOL_MAT Tool’s material 0 TOOLS

TOOL_RAD Tool radius 1 TOOL CHANGE:

TOOL_TYPE Punch tool type code 7 TOOL CHANGE:

TP_CMNT Toolpath comment 0 BEGINNING OF TOOLPATH:

TP_NAME Toolpath name 0 BEGINNING OF TOOLPATH:

TP_TYPE Tool path main type:Mill, Lathe, Wire, Punch 0 BEGINNING OF TLPATH

TP1_TYPE Tool path sub type 0 BEGINNING OF TLPATH

TPNM_LOWER Toolpath name in lowercase letters 0 BEGINNING OF TOOLPATH:

TRANS_MATX
TRANS_MATY
TRANS_MATZ

Translation from current UCS 6
to the original MACSYS

BEGINNING OF PROC: /
TOOL CHANGE: /
ORIGIN CHANGE: /
BEGINNING OF TAPE:

TRANSF_NUM Number of transformations 6 BEGINNING OF PROC:

TRF_MAT1...9 Transformation rotation matrix 1 TRANSFORMATION:

TRF_VECX Transformation matrix 1 TRANSFORMATION:

TRF_VECY Transformation matrix 1 TRANSFORMATION:

TRF_VECZ Transformation matrix 1 TRANSFORMATION:

UNIBI_DIR PROFILE - Unidir/Bidir 6 BEGINNING OF PROC:

USER_NAME Give the user name as an output 0 BEGINNING OF TAPE:

WEIGHT Weight of each control point NURBS MOTION:

B-10 Formats for Variables Cimatron GPP 12

Tool Path Default Block(s) in Which
Variable Description Format Value is Set

Type

WINT_1 Charmilles G27 6 TOOL CHANGE:

WINT_2 Charmilles G28 6 TOOL CHANGE:

WINT_3 Charmilles G29 6 TOOL CHANGE:

WINT_4 Charmilles G30 6 TOOL CHANGE:

WINT_5 Charmilles G28G29 6 TOOL CHANGE:

WINT_6 Charmilles G29G30 6 TOOL CHANGE:

WINT_7 Charmilles G32 6 TOOL CHANGE:

WINT_8 Charmilles G38 6 TOOL CHANGE:

WINT_9 Charmilles G39 6 TOOL CHANGE:

WINT_10 Charmilles G45 6 TOOL CHANGE:

WINT_11 Charmilles G46 6 TOOL CHANGE:

WINT_12 Charmilles G60 6 TOOL CHANGE:

WINT_13 Charmilles G61 6 TOOL CHANGE:

WINT_14 Charmilles G62 6 TOOL CHANGE:

WINT_15 Charmilles G63 6 TOOL CHANGE:

WITH_STOCK WCUT - With/Without Stock 6 BEGINNING OF PROC:

WREAL_1 Charmilles C for G32 1 TOOL CHANGE:

WREAL_2 Charmilles K for G32 1 TOOL CHANGE:

WREAL_3 Charmilles X for G32 1 TOOL CHANGE:

WREAL_4 Charmilles Y for G32 1 TOOL CHANGE:

WREAL_5 Charmilles R for G32 1 TOOL CHANGE:

WREAL_6 Charmilles A for G38 & G39 1 TOOL CHANGE:

X_AFTR_TCH Next X value after tool change. 1 TOOL CHANGE:

X_CENTER X coordinate of center 1 CIRCULAR MOTION:

X_CURPOS X coordinate of current position 1 BEGINNING OF TAPE:

LINEAR MOTION:

CIRCULAR MOTION:

CYCLE:

X_ENDPT X coordinate of endpoint 1 CIRCULAR MOTION:

THREAD CYCLE:

THREAD CANNED CYCLE:

GROOVE CYCLE:

X_HOME X coordinate of home 1 BEGINNING OF TAPE:

X_INTER X intermediate point 1 BEGINNING OF PROC:

Cimatron GPP 12 Formats for Variables B-11

Tool Path Default Block(s) in Which
Variable Description Format Value is Set

Type

X_MACH X coordinate of machine zero 1 BEGINNING OF TAPE:

X_ORIGIN Origin, X coordinate 1 BEGINNING OF TAPE:

ORIGIN CHANGE:

X_START X coordinate of start position 1 BEGINNING OF PROC:

THREAD CYCLE:

THREAD CANNED CYCLE:

GROOVE CYCLE:

Y_AFTR_TCH Next Y value after tool change. 1 TOOL CHANGE:

Y_CENTER Y coordinate of center 1 CIRCULAR MOTION:

Y_CURPOS Y coordinate of current position 1 BEGINNING OF TAPE:

LINEAR MOTION:

CIRCULAR MOTION:

CYCLE:

Y_ENDPT Y coordinate of endpoint 1 CIRCULAR MOTION:

THREAD CYCLE:

THREAD CANNED CYCLE:

GROOVE CYCLE:

Y_HOME Y coordinate of home 1 BEGINNING OF TAPE:

Y_INTER Y intermediate point 1 BEGINNING OF PROC:

Y_MACH Y coordinate of machine zero 1 BEGINNING OF TAPE:

Y_ORIGIN Origin, Y coordinate 1 BEGINNING OF TAPE:

ORIGIN CHANGE:

Y_START Y coordinate of start position 1 BEGINNING OF PROC:

THREAD CYCLE:

THREAD CANNED CYCLE:

GROOVE CYCLE:

Z_AFTR_TCH Next Z value after tool change. 1 TOOL CHANGE:

Z_CENTER Z coordinate of circle center 1 CIRCULAR MOTION:

Z_CURPOS Z coordinate of current position 1 BEGINNING OF TAPE:

LINEAR MOTION:

CIRCULAR MOTION:

CYCLE:

Z SURFACE:

Z_DOWN The procedure Z DOWN value 1 BEGINNING OF PROC:

Z_ENDPT Z of circle endpoint 1 CIRCULAR MOTION:

Z_HOME Z coordinate of home 1 BEGINNING OF TAPE:

B-12 Formats for Variables Cimatron GPP 12

Tool Path Default Block(s) in Which
Variable Description Format Value is Set

Type

Z_INTER Z intermediate point 1 BEGINNING OF PROC:

Z_MACH Z coordinate of machine zero 1 BEGINNING OF TAPE:

Z_ORIGIN Origin, Z coordinate 1 BEGINNING OF TAPE:

ORIGIN CHANGE:

Z_START Z coordinate of start position 1 BEGINNING OF PROC:

Z_UP The procedure Z UP value 1 BEGINNING OF PROC:

�

Cimatron GPP 12 Formats for Variables B-13

S Appendix C

Statement Syntax Summary

Declaration statements may appear in any order. However, all declaration statements must appear at
the beginning of the Post-processor Program File and before any blocks.

Executable statements may appear in the blocks and in the NEW_LINE_IS declaration statement in
any order.

If two statements of the same type are on the same line, they must be followed by a semicolon and a
space.

Angle brackets < > indicate names or text to be provided by the user. The angle brackets themselves
are not part of the syntax and should not be included.

Words in a statement and items in a list should be separated by a space.

Statements in brackets { } are optional.

It is permissible to use single entries in places where lists are indicated.

Comment lines may be included in the Post-processor Program File to make it easier to read by
typing an asterisk before the comment. Comment lines will be ignored during execution.

C.1 Declaration Statements

FORMAT (format type) <list of variables or ALL_VAR> ;

IDENTICAL <variable> <list of variables> ;

INTERACTION (format type)

“<name of variable that appears in interaction
area of screen during POSTPR>”

<name of variable in program> = <initial default
value of variable> ;

MODAL <list of variables or ALL_VAR> ;

NEW_LINE_IS <special character> ;

Executable Statements

SET_TABS <list of numbers> ;

Cimatron GPP 12 Statement Syntax C-1

C.2 Executable Statements

Assignment Statements -

<variable> = <arithmetic expression> ;
or, <variable> = “<literal string>” ;

CALL “<external program name>”

INPAR <list of input variables> ;
OUTPAR <list of output variables> ;

IF_SET (<variable or logical argument>) <list of executable statements>
{ELSE <list of executable statements>}

END_IF;

IF_EXISTS (<variable>) <list of executable statements>
{ELSE <list of executable statements>}

END_IF;

REPEAT <list of executable statements>
UNTIL (<variable or logical argument>) ;

KEEP <list of variables or ALL_VAR> ;

OUTPUT <list of constants, variables, and/or special characters> ;

PRINT <list of constants, variables, and/or special characters> ;

PRINT0 <list of constants, variables, and/or special characters> ;

PRINT1..10 <list of constants, variables, and/or special characters> ;

RESET <list of variables or ALL_VAR> ;

SET_ON <list of variables or ALL_VAR> ;

SET_OFF <list of variables or ALL_VAR> ;

CONVERT <input variable> <output variable> <output variable> �

C-2 Statement Syntax Cimatron GPP 12

S Appendix D

DFPOST Questions

If a printout of the DFPOST file is requested, it will appear as follows.

The values in angle brackets < > are defaults.

Where several options are listed separated by commas, the first is the default value. When there is
nothing in the angle brackets, no limit is required.

Up to 20 positions may be used for the answers to questions.

Use arrow keys to move to a different question without changing the setting. Press <TAB> to select
one of the other options.

In character fields, quotation marks enclosing blanks may be used to include blank characters at the
end of code “ ”.

Note: • Sections 1 to 4 below, are informational only.

D.1 Tape Information

When the maximum number of blocks or tape length is reached during an execution,
the tape will be cut automatically and a warning message will be issued.

1. Maximum no. of blocks in tape < >

2. Maximum tape length (in meters) <60.0>

3. Subroutines in separate files <YES,NO>

D.2 Programming Mode and Unit

Questions 1 through 4 are for informational purposes only. Every length unit (X, Y,
Z, I, J, K) will be multiplied by the Factor for length units.

1. Programming mode <ABSOLUTE,INCREMENTAL,BOTH>

2. Code for absolute coordinates <G90>

3. Code for incremental coordinates <G91>

4. Length unit of measurement <METRIC,INCHES,BOTH>

5. Factor for length units <1.0>

6. Tool Start Point <TP HOME, 1ST PROC HOME>

7. Coordinate orientation <MACSYS, 1st PROC, CUR PROC>

Notes: • 6. Tool Start Point: If TP HOME is chosen, X_HOME, Y_HOME,
and Z_HOME will be the coordinates of the tool path start point. If
1ST PROC HOME is chosen, the coordinates will reflect the start
point of the procedure.

Cimatron GPP 12 DFPOST Questions D-1

• 7. Coordinate orientation: If 1ST PROC is chosen, the output
orientation will be the same as that of the first output procedure. If
CUR PROC is chosen, the output orientation will be the same as TP
LIST.

D.3 Formats

There are eighteen format option questions for each of the following formats. They
are listed below the formats. The default values for the formats each have a value
with twelve positions. Each position represents an answer for one of the twelve format
option questions.

If a question is to be answered YES or NO, 0 is NO and 1 is YES. The tilde ~
symbol represents any character but a blank. A blank space in the default position
indicates that no character or space will be inserted in the specified position.

Note: • For technical reasons the values representing the answers to Format
Options 11 and 12 are reversed, i.e. the 11th position corresponds to
Format Option 12 and the 12th position corresponds to Format
Option 11.

Character is a format type which may be assigned in place of the format types listed.
It is not defined with the DFPOST questions. It assigns a modal status, by default.
Variables formatted as Character may contain up to 20 characters.

User_1 to User_10 are user-defined format types and are explained in Section 3.2.

1. Coordinates <430000~-.101>

2. Angles <430000~-.101>

3. Feed <5 1001~~ 101>

4. Spindle_speed <5 1001~~.101>

5. Dwell <430000~~.101>

6. Sequencing <5 1001~~ 101>

7. Tool <4 0000~~.001>

8. User_1 <430000~-.001>

9. User_2 <430000~-.001>

10. User_3 <430000~-.101>

11. User_4 <430000~-.101>

12. User_5 <430000~-.101>

13. User_6 <430000~-.101>

14. User_7 <430000~-.101>

15. User_8 <430000~-.101>

16. User_9 <430000~-.101>

17. User_10 <430000~-.101>

18. Real <355511~-.100>

D-2 DFPOST Questions Cimatron GPP 12

The values entered below are the default settings for Coordinates, 1. above.
<430000^-.101>

See Chapter 3 in this manual for a detailed explanation of modal variable values (Item
12).

D.3.1 Format Options

1. Max. digits for integer part <4>

2. Max. digits for fractional part <3>

3. Min. digits for integer part <0>

4. Min. digits for fractional part <0>

5. Leading zeroes <NO,YES>

6. Trailing zeroes <NO,YES>

7. Character for the + sign < >

8. Character for the - sign <->

9. Character for decimal point <.>

10. Use decimal pt. for whole numbers?.<YES,NO>

11. Representation of value 0 <0>

12. Modal value ? <YES,NO>

Notes: • Max. digits for integer part/Max. digits for fractional part <= 9

• For Real format, Max. digits for integer part and Max. digits for
fractional part are internally set to 14

D.4 Positioning Codes (Not in use after version 5.0)

1. Code for A axis <A>

2. Code for B axis

3. Code for C axis <C>

D.5 Messages and Inserts

1. Max no. of messages < >

2. Max no. of characters in messages <75>

D.6 Machine Parameters

1. Code for clockwise spin <M3>

2. Code for counterclockwise spin <M4>

3. Code for spin stop <M5>

4. Code for flood on <M7>

5. Code for mist on <M8>

6. Code for air on <M10>

Cimatron GPP 12 DFPOST Questions D-3

7. Code for through on <M11>

8. Code for coolant off <M9>

9. Cutter compensation off <G40>

10. Cutter compensation left <G41>

11. Cutter compensation right <G42>

D.7 Linear Motion

When the maximum values set in items 3 through 6 are reached, a warning will be
issued but processing will not be affected. Items 7 through 10 are used in the
calculation of the estimated machining time in minutes which appears in the tool table
file produced by POSTPR.

1. Code for rapid motion (FAST) <G0>

2. Code for cutting/feed motion <G1>

3. Maximum length of movement < >

4. Maximum X dimension for part <10000.0>

5. Maximum Y dimension for part <500.0>

6. Maximum Z dimension for part <500.0>

7. Machine speed for rapid motion in X (mm/m) <8000.0>

8. Machine speed for rapid motion in Y (mm/m) <8000.0>

9. Machine speed for rapid motion in Z (mm/m) <5000.0>

10. Machine speed for table positioning (rpm) <11.0>

D.8 Circular Motion

If item 3 is YES, the arc will be divided into smaller arcs that do not cross quadrant
borders.

1. Code for clockwise motion is <G02>

2. Code for counterclockwise is <G03>

3. Angles limited to quadrant? <YES,NO>

4. Tolerance for linear approximation is <0.1>

5. Min. segments for linear approximation is <4>

D-4 DFPOST Questions Cimatron GPP 12

D.9 NURBS motion

1. Code for nurbs motion <G6.2>

2. Knot normal factor <YES,NO>

3. Knot normal factor is <10000>

4. Linear approximation <YES,NO>

5. Tolerance for linear approximation <0.01>

Notes: • If the desired rangle of the knot is betwen 0 and 8,000, choose Knot
normal factor: Yes, Knot normal factor is: 8000.

• If the output is to be in linear motions, choose Linear approximation:
Yes and specify a value for the tolerance.

D.10 Canned Cycles

1. Code for high speed peck <G73>

2. Code for left hand tapping <G74>

3. Code for fine boring <G76>

4. Code for spot drill <G81>

5. Code for counter boring <G82>

6. Code for deep hole peck <G83>

7. Code for tapping <G84>

8. Code for boring <G85>

9. Code for boring + spindle stop <G86>

10. Code for back boring <G87>

11. Code for boring + dwell + manual out <G88>

12. Code for boring + dwell + feed <G89>

13. Code for retract to initial point <G98>

14. Code for retract to clearance <G99>

D.11 Output Files

1. Tools file <YES,NO>

2. Origins file <YES,NO>

3. Messages file <YES,NO>

4. Cycles file <YES,NO>

5. PRINT1 file extension pr1

6. PRINT2 file extension pr2

7. PRINT3 file extension pr3

8. PRINT4 file extension pr4

9. PRINT5 file extension pr5

Cimatron GPP 12 DFPOST Questions D-5

10. PRINT6 file extension pr6

11. PRINT7 file extension pr7

12. PRINT8 file extension pr8

13. PRINT9 file extension pr9

14. PRINT10 file extension pr10

15. Run script file after Post? <NO/YES>

D.12 POSTPR/EXTPST Interface

1. Ask for machine zero? ,<NO/MACSYS/1st ORIGIN>

2. Ask for UCS order? <NO/YES>

3. Ask to save a session? <NO/YES>

4. Ask to send files to screen? <NO/YES>

Notes: • If “Messages file” is “NO”, the EXF “PRINT” command will send a
message to the screen, but the Messages file will not be created.

• If blanks are defined instead of the pr1..10, no output file will be
created even if the PRINT1..10 commands are used.

�

D-6 DFPOST Questions Cimatron GPP 12

S Appendix E

Post-processor Program File Structure

Cimatron Post-processor files follow a routine structure throughout.

There are five statements associated with the structure:

1. FORMAT statements

2. INTERACTION statements

3. MODAL, NON-MODAL, IDENTICAL, SET-TABS statements

4. NEW_LINE_IS statement

5. BLOCK statements

Notes: • It is not mandatory for all of the statements to be included in a
post-processor file.

• At least one BLOCK statement must be included in the file.

• The statements must appear in the order in which they are listed
above.

The following is an example of a post-processor file for the Fanuc 6MB milling machine. It is
possible to see the structure outlined above. The first three lines are FORMAT statements, followed
by four lines of INTERACTION statements. Following these are a series of NON-MODAL and
IDENTICAL statements, and then the single NEW_LINE_IS statement. BLOCK statements follow
and usually make-up most of the file and include QUALIFIERS where necessary.

For example, the LINEAR MOTION: line appears as:

LINEAR MOTION: FAST:

where LINEAR MOTION: is the block, and FAST: is the qualifier.

* POSTPROCESSOR FOR FANUC 6MB
*—————————————————————————————-

FORMAT (SEQUENCING) SEQ SUBSEQ DVAL HVAL SUBFLG SUBNUM ;
FORMAT (COORDINATES) XCENTER YCENTER XPOS YPOS;
FORMAT (COORDINATES) XTAN YTAN ZTAN XNORM YNORM ZNORM ;

INTERACTION (SEQUENCING) “SEQUENC-START” SEQSTART = 10 ;
INTERACTION (SEQUENCING) “SEQUENC-INCR.” SEQINCR = 2 ;
INTERACTION (USER_1) “PROGRAM-NUMBER” PGN = 150 ;
INTERACTION (USER_2) “ZERO-DATUM” ZDM = 55 ;

NON_MODAL DVAL SUB_NUMBER SUBNUM ;
IDENTICAL X_CURPOS X_ENDPT; IDENTICAL Y_CURPOS Y_ENDPT;

Cimatron GPP 12 Program File Structure E-1

NEW_LINE_IS $;

IF_SET (SUBFLG _EQ_ 0)

OUTPUT\J “N” SEQ ;
SEQ = SEQ + SEQINCR ;

ELSE

OUTPUT \J “N” SUBSEQ ;
SUBSEQ = SUBSEQ + SEQINCR ;

END_IF ;

BEGINNING OF TAPE:

SUBFLG = 0 ;

NEXT_TOOL = 999 ;

SEQ = SEQSTART ;

SUBSEQ = 500 ;

OUTPUT “% ” \J “O” PGN ;

OUTPUT $ “ G90 G99 G” ZDM ;

END OF TAPE:

OUTPUT $ “ M30" ;

FEED:

KEEP MCH_FEED;

SPIN:

KEEP SPIN_SPEED ;

COOLANT:

KEEP MCH_COOL ;

DWELL:

KEEP MCH_DWELL;

TOOL CHANGE:

SET_ON SPIN_DIR SPIN_SPEED Z_CURPOS MCH_COOL ;

DVAL = CURR_TOOL ;

OUTPUT $ “ M6 T” CURR_TOOL ;

IF_SET (NEXT_TOOL _NE_ 999) OUTPUT $ “ T” NEXT_TOOL ; END_IF ;

OUTPUT $ “ ” SPIN_DIR “ S” SPIN_SPEED ;

SET_ON CURR_TOOL ZDM ;

OUTPUT $ “ G90 G0 G49 G” ZDM “ H” CURR_TOOL “ Z” Z_CURPOS ;

OUTPUT “ ” MCH_COOL ;

E-2 Program File Structure Cimatron GPP 12

LINEAR MOTION: FAST:

OUTPUT $;

IF_SET (LIN_MOV) OUTPUT “ ” LIN_MOV ; END_IF ;

IF_SET (X_CURPOS) OUTPUT “ X” X_CURPOS ; END_IF ;

IF_SET (Y_CURPOS) OUTPUT “ Y” Y_CURPOS ; END_IF ;

IF_SET (Z_CURPOS) OUTPUT “ Z” Z_CURPOS ; END_IF ;

SET_ON CIRC_MOV ;

XPOS = X_CURPOS ;

YPOS = Y_CURPOS ;

LINEAR MOTION:

OUTPUT $;

IF_SET (LIN_MOV) OUTPUT “ ” LIN_MOV ; END_IF ;

IF_SET (X_CURPOS) OUTPUT “ X” X_CURPOS ; END_IF ;

IF_SET (Y_CURPOS) OUTPUT “ Y” Y_CURPOS ; END_IF ;

IF_SET (SUBFLG _EQ_ 0)

IF_SET (Z_CURPOS) OUTPUT “ Z” Z_CURPOS ; END_IF ;

END_IF ;

IF_SET (MCH_FEED) OUTPUT “ F” MCH_FEED ; END_IF ;

SET_ON CIRC_MOV ;

XPOS = X_CURPOS ;

YPOS = Y_CURPOS ;

CIRCULAR MOTION:

XCENTER = X_CENTER - XPOS ;

YCENTER = Y_CENTER - YPOS ;

OUTPUT $;

IF_SET (CIRC_MOV) OUTPUT “ ” CIRC_MOV ; END_IF ;

IF_SET (X_ENDPT) OUTPUT “ X” X_ENDPT ; END_IF ;

IF_SET (Y_ENDPT) OUTPUT “ Y” Y_ENDPT ; END_IF ;

IF_SET (XCENTER) OUTPUT “ I” XCENTER ; END_IF ;

IF_SET (YCENTER) OUTPUT “ J” YCENTER ; END_IF ;

IF_SET (MCH_FEED) OUTPUT “ F” MCH_FEED ; END_IF ;

SET_ON LIN_MOV ;

XPOS = X_ENDPT ;

YPOS = Y_ENDPT ;

Cimatron GPP 12 Program File Structure E-3

NURBS MOTION: (Spline approximation)

NURBS MOTION: START:

OUTPUT $ NURBS_MOV “P” NURBS_DEG ;

count = 0;

first = 1;

SET_ON MCH_FEED;

NURBS MOTION:

IF_SET (first _EQ_ 0)

OUTPUT $ “K” KNOT_ “X” CNTRL_X “Y” CNTRL_Y “Z” CNTRL_Z;

END_IF;

first = 0;

NURBS MOTION: END:

deg = NURBS_DEG ;

REPEAT

count = count + 1 ;

OUTPUT $ “K” KNOT_ ;

UNTIL (count _EQ_ deg) ;

SET_ON LIN_MOV CIRC_MOV MCH_FEED;

The output in this case is:

G6.2P4K0.0X29.884Y-72.172Z28.F350

K0.0X25.447Y-72.172Z27.963

K0.0X20.675Y-72.172Z28.119

K0.0X15.458Y-72.172Z27.968

K6768.865X14.124Y-72.172Z27.845

K7277.632X12.354Y-72.172Z27.619

K7958.017X11.016Y-72.172Z27.538

K8810.654X10.238Y-72.172Z27.497

K10000.

K10000.

K10000.

K10000.

E-4 Program File Structure Cimatron GPP 12

*——————SUBROUTINE DEFINITIONS———————————-

SUBROUTINE CALL:

SUBNUM = SUB_NUMBER + 7999 ;

OUTPUT $ “ G65 P” SUBNUM “ Z” LAYER_Z ;

SET_ON LIN_MOV CIRC_MOV MCH_FEED ;

SET_ON X_CURPOS Y_CURPOS Z_CURPOS ;

BEGINNING OF SUB:

SUBFLG = 1 ;

SET_ON ZDM ;

OUTPUT “%” ;

OUTPUT \J “O” SUBNUM ;

OUTPUT $ “ G90 G” ZDM ;

SET_ON MCH_FEED ;

OUTPUT $ “ G1 Z#26 F” MCH_FEED ;

END OF SUB:

OUTPUT $ “ G40" $ ” M99" ;

SUBFLG = 0 ;

SET_ON LIN_MOV CIRC_MOV MCH_FEED ;

SET_ON X_CURPOS Y_CURPOS Z_CURPOS ; �

Cimatron GPP 12 Program File Structure E-5

S Appendix F

Sample Tool Path Listing

Procedure Header List

PROCEDURE HEADER LIST
——————————-
PART FILE NAME: “app_a”
MACSYS NAME : “MM “

TOOL PATH NAME= REPORT LEVEL= REP_NC UCS= REPORT TYPE= MILL 3X

—— PROFILE = 1 OUTER CONTOUR — TOOL= D30

—— PROFILE = 2 TOP CIRCLE - OUT — TOOL= D35-R5

—— DRILL = 3 CENTER DRILL POCKET

—— DRILL = 4 DEEP DRILL POCKET

—— POCKET = 5 POCKET-INSIDE FINISH C- TOOL= D25

Cimatron GPP 12 Sample Tool Path Listing F-1

Figure F-1: The Machined Part

Home

Origin

Tool Path Listing

TOOL PATH LISTING

=================

PART FILE NAME: “app_a”

BLOCK

NUMBER BLOCK DESCRIPTION

——— ————————-

0 HEADER

MACSYS NAME : “MM ”

TOOL PATH LEVEL : “REP_NC”

TOOL PATH NAME : “REPORT ”

MACHINE TYPE : “MILL 3X ”

(NOTE: The Tool Path origin is expressed in the MACSYS

coordinate system! All other points are expressed

relative to the active origin.)

TOOL PATH ORIGIN: X = 0.0000 Y = 100.0000 Z = 70.0000

HOME : X = 0.0000 Y = 0.0000 Z = 0.0000

UCS NAME : “REPORT”

2 PROCEDURE NUMBER = 2

CREATION DATE: 26/04/95.09:08:17

FUNCTION NAME: “PROFILE ”

COMMENT : “TOP CIRCLE - OUT ”

2- 0 OPEN REGION 1

2- 1 MACHINE PARAMS: FEED = FAST

2- 2 MACHINE PARAMS: SPIN = 1000 CW

2- 3 MACHINE PARAMS: COOL = OFF

2- 4 MACHINE PARAMS: VC = 30.00 CW

2- 5 MACHINE PARAMS: UCS = REPORT

2- 6 MACHINE PARAMS: TOOL = D35-R5

SIMPLE LINES:

2- 7 X = 139.0000 Y = -20.0000 Z = 0.0000

2- 8 X = 139.0000 Y = -20.0000 Z = -19.0000

2- 9 MACHINE PARAMS: FEED = 105.00

SIMPLE LINES:

2- 10 X = 139.0000 Y = -20.0000 Z = -40.0000

2- 11 OPEN LAYER (Z=-40.00)

2- 12 MACHINE PARAMS: FEED = 350.00

SIMPLE LINES:

2- 13 X = 139.0000 Y = -20.0000 Z = -40.0000

2- 14 OPEN PASS

2- 15 OPEN APPROACH (TYPE=TAN.)

2- 16 MACHINE PARAMS: CUT.COM_= NOT IN USE

SIMPLE LINES:

2- 17 X = 137.5000 Y = -20.0000 Z = -40.0000

2- 18 SIMPLE ARC:

ARC PLANE = XY

ARC ANGLE = 1.57

ARC CENTER X = 137.5000 Y = -50.0000

F-2 Sample Tool Path Listing Cimatron GPP 12

ARC END X = 107.5000 Y = -50.0000 Z = -40.0000

2- 19 CLOSE APPROACH

2- 20 OPEN CONTOUR

2- 21 SIMPLE ARC:

ARC PLANE = XY

ARC ANGLE = -6.28

ARC CENTER X = 50.0000 Y = -50.0000

ARC END X = 107.5000 Y = -50.0000 Z = -40.0000

2- 22 CLOSE CONTOUR

2- 23 OPEN RETRACT (TYPE=NOR.)

2- 24 MACHINE PARAMS: CUT.COM_= NOT IN USE

SIMPLE LINES:

2- 25 X = 112.5000 Y = -50.0000 Z = -40.0000

2- 26 CLOSE RETRACT

2- 27 CLOSE PASS

.

.

.

.

.

.

END PROCEDURE NUMBER 2

——————————————————————————————

END OF TOOL PATH

�

Cimatron GPP 12 Sample Tool Path Listing F-3

S Appendix G

Sample Output Program File

%

O150

N10 G90 G99 G55

N12 M6 T2

N14 M03 S796

N16 G90 G0 G49 G55 H2 Z75.

N18 G00 X-15. Y50.

N20 Z1.

N22 G01 Z-10. F30.

N24 G65 P8000 Z-10.

N26 G01 X-15. Y50. Z-10. F100.

N28 Z-20. F30.

N30 G65 P8000 Z-20.

N32 G01 X-15. Y50. Z-20. F100.

N34 Z-25. F30

N36 G65 P8000 Z-25.

N38 G00 X-10. Y50. Z75.

N40 Z100.

N42 M30

%

O8000

N500 G90 G55

N502 G1 Z#26 F100.

N504 G01 X-5. Y50.

N506 Y0.

N508 G03 X0. Y-5. I5. J0.

N510 G01 X100.

N512 G03 X105. Y0. I0. J5.

N514 G01 Y100.

N516 G03 X100. Y105. I-5. J0.

N518 G01 X0.

N520 G03 X-5. Y100. I0. J-5.

N522 G01 Y50.

N524 X-10.

N526 G40

N528 M99 �

Cimatron GPP 12 Sample Output Program File G-1

S Appendix H

Script After Post-processor

There is often a necessity to conduct some form of file management, such as changing file names or
grouping files into specific directories.

The file management may either be carried out manually or by supplying a script file that will be
executed automatically once the postpr has been completed.

The script file is a command file that is specific to an operating system (examples given here use
Unix commands). The script name is:

<system_dir>/post/<ppname>.cmd

The user may decide whether or not to execute the script by answering the appropriate question in
the DFPOST section concerning output files:

15. Run script file after post ?...................YES/NO

Example of the use of a script file

To change the names of the output files to nc.out, the following script would be written:

mv <part>.<tp1>.<ppname> nc.out

The script cannot be made general because the part, toolpath and post names have to be supplied.
However, this information is available during the post execution. Thus it is possible to create the
script file as part of the postpr program.

For example, to create the above script, the following command would be included in the
ppname.exf file (the <ppname> in this example refers to the name of the post currently being
written):

print0 “mv” part_name “.” tp_name “.” <ppname> “ nc.out”

print0 is similar to the print command. The output from print0 is always directed to a print0.txt file in
the current directory. This file is invoked by the standard script file (<ppname>.cmd), the contents
of which appear as follows:

print0.txt
rm print0.txt

In this example we have two script files, one of which is a standard script that invokes the other.
This second script, is created during the postpr execution and is specific to the execution. �

Cimatron GPP 12 Script After POSTPR H-1

S Appendix I

Forbidden Names for User Defined

Variables and Blocks

The following expressions may not be used as the names of user-defined blocks or variables.

1. The names of user-defined variables:

• May not contain an underscore

• May not be one of the calculation syntaxes (ATAN). (See Appendix L)

• May not be one of the comparison symbols (EQ, NE, GT, GE, LT, LE)

2. The names of user-defined blocks may not be one of the system blocks or qualifiers. �

Cimatron GPP 12 Forbidden Names I-1

S Appendix J

Error Messages

Two types of errors may occur. User errors, which are caused by using the program incorrectly, are
explained below. System errors, which are usually caused by hardware or internal problems, are
listed at the end of this appendix. If a system error occurs, call a support engineer.

If a system error occurs, it will be labeled as such. Errors that are not labeled as system errors are
user errors. The errors are listed in alphabetical order.

USER ERRORS

CMPVAL -Wrong comparison for character

In your logical expression, a non-character variable has been
compared with a character variable. Correct the expression and
reprocess.

CMPVAL -Wrong attribute for comparison

The variables in your logical expression have different attributes and
cannot be compared. Check the expression and reprocess after
correcting them.

DTPMSG -User defined delimiter not found

This is a warning message. Processing will continue correctly. A
user-defined block was inserted in the Post-processor Program File.
However, the same block was not inserted in the tool path using the
INSERT sub-option of SERVICE. Correct the situation and retry.

DTPMSG -User defined delimiter not present in external file

The name of a user-defined block was inserted in the tool path using
the INSERT sub-option of SERVICE. However, it was not included
in the Post-processor Program File. Correct the situation and retry.

DTPMSG -Maximum number of messages exceeded - Further messages are suppressed.

In Section 5, Question 1 of the DFPOST questions, a maximum
number of messages, that may be inserted with the SERVICE option,
is set. If that number is exceeded, this warning message will appear
and processing will continue. If you want all messages to appear,
change the answer to the DFPOST question and reprocess.

ERROR IN DIVIDING THE TAPE

The file required for the next part of the tape cannot be opened. It is
probably in use. Close it and retry.

Cimatron GPP 12 Error Messages J-1

GNPOST Too many characters in file - “file name”

The output program file name is composed of:
<part file name> + <tool path name> + <post-processor name> The
total name may not exceed 24 characters.

If this message appears, adjust the names of the elements from
which the output program gets its name so that the maximum will
not be exceeded. Reprocess.

GNTLTB Too many characters in file name

The name of the output TOOL file is composed of:
<part file name> + <tool path name> + TOOL
This total may not exceed 24 characters. Proceed as explained for
the previous error.

GNTLTB -Error opening file - “file name”

The file containing the tool table for this output file which has the
extension .TOOL is probably in use. Close the file and reprocess.

GNWCAL Cannot assign character value to numeric variable

You have tried to assign a non-numeric value to a variable which is
defined as numeric. Check your listings and change either the format
setting or the value, if possible. Reprocess.

GNWCAL -Maximum length of assignment is 20

The expression on the right side of the equals sign in your
assignment statement is more than 20 characters long. Shorten the
statement and reprocess.

J-2 Error Messages Cimatron GPP 12

SYSTEM ERRORS

CALCIN -Error calculating expression

DFANSW Illegal type

DTPDAC Cannot get cycle data

GNDUMP Error writing file

GNPOST Error opening file “file name”

GNPOST Error opening Tool Path entities

GNPOST No Tool Paths available

GNSET Format error for variable “variable name”

GNTLST Inconsistency error

GNWORK Illegal comparison in IF_SET

GNWORK Illegal operation

GNWOUT Wrong attribute

GNWOUT Error writing messages file.

GNWVAR Variable “variable name” not initialized

GNWVAR No format for variable “variable name” �

Cimatron GPP 12 Error Messages J-3

S Appendix K

Sample External Program

Monitor Routine and Subroutine

The following is an example of an external program monitor routine. Refer to Section 1.4 for an
explanation of the structure.

Routine Comment

Section I.

SUBROUTINE UGPSUB (NAME,L)

CHARACTER*6 NAME

INTEGER L Define the variables.

IF (NAME(1:L).EQ.’PR1’) THEN

CALL PR1

ELSE IF (NAME(1:L).EQ.’PR2’) THEN

CALL PR2

ENDIF

RETURN

END Determine which external program to run.

Section II.

A.

SUBROUTINE PR1

REAL XL,YL,ADD

INTEGER VAL

CHARACTER CHAR1*20 First external program - PR1

Define the variables.

CALL GTEPGP (‘XLAST ‘,XL)

CALL GTEPGP (‘YLAST ‘,YL)

CALL GTEPGP (‘INVAL ‘,VAL) Get values of input variables.

B.

ADD = XL - YL

VAL = VAL * 2

CHAR1 = ‘OK’ Execute external program.

C.

CALL STEPGP (‘STAM1 ‘,ADD)

Cimatron GPP 12 Sample Routines K-1

CALL STEPGP (‘INTVAL ‘,VAL)

CALL STCPGP (‘CHAR1 ‘,CHAR1,2)

RETURN

END Set values of output variables.

A.

SUBROUTINE PR2

REAL XL,YL,SUB Second external program - PR2

Define the variables.

CALL GTEPGP (‘XLAST ‘,XL)

CALL GTEPGP (‘YLAST ‘,YL) Get values of input variables.

B.

SUB = XL - YL Execute external program.

C.

CALL STEPGP (‘STAM2 ‘,SUB)

RETURN

END Set value of output variable.

The following subroutines are available in an external program.

Name: GTEPGP

Purpose: Get the values of integer or real variables which are input to an external
program.

Syntax: GTEPGP (INPNAM, VAL)

Character*(*) INPNAM

Real VAL

Input: INPNAM The name of the variable as it appears in the Post-processor
Program File.

VAL The numeric value of the variable.

Output: VAL The numeric value of the variable.

K-2 Sample Routines Cimatron GPP 12

Name: GTEPGD

Purpose: Same as for GTEPGP except for double precision variables.

Name: GTCPGP

Purpose: Get the values of character variables which are input to an external
program.

Syntax GTCPGP (INPNAM, VAL LENG)

Character*(*) INPNAM, VAL

Integer LENG

Input: INPNAM The name of the variable as it appears in the Post-processor
Program File.

Output: LENG Number of characters in VAL.

VAL The actual characters in VAL.

Name: STEPGP

Purpose: Set the values of integer or real variables which are output from an external
program.

Syntax: STEPGP (INPNAM, VAL)

Character*(*) INPNAM

Real VAL

Input: INPNAM The name of the variable as it appears in the Post-processor
Program File.

Output: VAL The numeric value of the variable.

Cimatron GPP 12 Sample Routines K-3

Name: STEPGD

Purpose: Same as for STEPGP, except for double precision variables.

Name: STCPGP

Purpose: Set the values of character variables which are output from an external
program.

Syntax: STCPGP (INPNAM, VAL, LENG)

Character*(*) INPNAM, VAL

Integer LENG

Input: INPNAM The name of the variable as it appears in the Post-processor
Program File.

Output: LENG Number of characters in VAL.

VAL The actual characters in VAL. �

K-4 Sample Routines Cimatron GPP 12

S Appendix L

Assignment Statement Calculator Options

Arithmetic Operators:

+ - * / The Standard Operators

** () Exponential, Parentheses

+ - Positive or Negative Number Indicator

Trigonometric Functions (Angle expressed in Degrees):

SIN ASIN

COS ACOS

TAN ATAN

Hyperbolic Functions:

SINH

COSH

TANH

General Functions:

DEGREE Convert from radians to degrees.

RADIAN Convert from degrees to radians.

SQRT Find the square root.

INCH Multiply by 25.4 (convert inches to millimeters).

PI Multiply by 3.141592.

A sample arithmetic expression might look as follows:

A=20

I =12

B=SQRT ((10*(SIN(A*0.25)))**2 + (Xpos[I+1])**2) �

Cimatron GPP 12 Calculator Options L-1

S Appendix M

List of Existing Procedure Names & Tool Path Types

Post Name Function Name

MILL:

CLEANUP CLEANUP

CURVE_MX CURVE_MX

DRILL DRILL

GO_PNT MILL_GO

ML_USR MILL_USR

PROFILE PROFILE

POCKET POCKET

REMACHIN CLEANUP

REMACHIN PENCIL

REMACHIN OPTIMIZE/HOR

REMACHIN OPTIMIZE/VER

ROUGH_5X ROUGH_5X

RULED_MX RULED_MX

SRFPRF SRFPRF

SRFPKT SRFPKT

SURCLR SURCLR

SURMIL SURMILL

WCUT WCUT

ZCUT ZCUT

WIRE:

WIRE_2X WIRE_2X

WIRE_4X WIRE_4X

WIREGO WIRE_GO

WIREPK WIREPK

WR_USR WIRE_USR

Cimatron GPP 12 Procedure Names and Tool Path Types M-1

Post Name Function Name

LATHE:

LT_FINIS LT_FINIS

GOLATH LATH_GO

GROOVE LT_GROOV

LT_DRILL LT_DRILL

LT_USR LATH_USR

LT_ROUGH LT_ROUGH

THREAD LT_THRED

PUNCH:

PN_USR PUN_USR

PUN_CIR PUN_CIR

PUN_GO PUN_GO

PUN_PNT PUN_PNT

PUN_PRF PUN_PROF

Tool Path Type (TP_TYPE):

MILL MILL

WIRE WIRE

LATHE LATHE

PUNCH PUNCH

Tool Path Type1 (TP1_TYPE):

MILL_2.5 MILL_2.5X

MILL_3 MILL_3X

MILL_4 MILL_4X

MILL_5 MILL_5X

WIRE_AGIE WIREDM AGIE

WIRE_CHARMILLE WIREDM CHARMILLE

WIRE_MAKINO WIREDM MAKINO

LATHE_LATHE LATHE

PUNCH_PUNCH PUNCH

�

M-2 Procedure Names and Tool Path Types Cimatron GPP 12

S Appendix N

ROT_MAT and ORIGIN CHANGE

In order to output the appropriate coordinates to the machine controller, several coordinate systems
have to be considered.
Most of the calculations related to ROTMAC are made in the CHANGE ORIGIN block of the EXF
file.

Note: • Changing the origin numbers in the GPP interaction as described in
Section 1.4 has no effect on the input values of the parameters.
Therefore, do not combine several origins unless an appropriate
solution is given in the post-processor.

N.1 Origin Information

The location and orientation of the origin are expressed in the MACSYS coordinate system.

In the example on the following page, the origin is at Y_ORIGIN, Z_ORIGIN. The origin is rotated
by 20 degrees, therefore, the vector of the Z axis is:

I_ORIGIN = sin[20], J_ORIGIN = 0, K_ORIGIN = cos[20].

Origins that have the same Z axis direction, also have the same I, J, and K values even if they have
different orientation of the X axis.

The machine axes rotation angles are only dependent upon the origin’s Z direction (and the machine
geometry).

N.2 Tool Position Information

The tool position is expressed as the distance (in MACSYS orientation) between the origin and the
tool (Y_CURPOS and Z_CURPOS in the example).

In the Tool Path listing, and on the screen, the tool position is expressed in the origin coordinate
system (Y TP LIST and Z TP LIST in the example).

A specific tool position expressed in different origins has the same X, Y, Z_CURPOS values if the
relevant origins have identical locations. The origin orientation is irrelevant.

Cimatron GPP 12 ROT_MAT and ORIGIN CHANGE N-1

N.3 Machine Position Calculation

The calculation of the 4/5 axis position comprises the following three steps:

1. Find the machine axis rotation angles.

2. Find the X,Y,Z translation.

3. Update ROT_MAT1 . . . ROT_MAT9 and TRANS_MATX . . . TRANS_MATZ.

The calculation of the 3 axis machine position comprises the following two steps:

1. Find the X,Y,Z translation.

2. Update TRANS_MATX . . . TRANS_MATZ.

Rotation Angle

The rotation angle in 4 axis machines is calculated as follows:

Rotation angle = ATAN (*_ORIGIN / Z_ORIGIN)

where * is I or J

To obtain the appropriate result, it is recommended to:

• use FORTRAN ATAN2 function (in external process) and not the ATAN function

in the EXF file.

• define I,J,K_ORIGIN with a precision of 7 decimal places.

The external program may be written as follows:

SUBROUTINE UGPSUB (NAME, L)

CHARACTER*6 NAME

INTEGER L

IF (NAME(1:L) .EQ. ‘ATANG2’) THEN

CALL ATANG2

ELSEIF

.

.

.

ENDIF

RETURN

END (continued on following page)

N-2 ROT_MAT and ORIGIN CHANGE Cimatron GPP 12

C———

SUBROUTINE ATANG2

C

C H-horizontal value

C V-vertical value

C A-angle result

REAL H,V,A

C

CALL GTEPGP (‘H’,H)

CALL GTEPGP (‘V’,V)

C

A = ATAN2 (V,H)

C

C Convert the angle from radians to degrees

C

A = A*180.0/3.1415926

C

C The conversion may vary between machines, according to the machine type.

C (Some machines may use angles 0-360 or +/-180 . . .)

C

CALL STEPGP(‘A’,A)

RETURN

END

C———

External programs like the one displayed above may be called from the EXF file by using the CALL
command:

V = I_ORIGIN; H = K_ORIGIN;

CALL “ATANG2" INPAR H V ; OUTPAR A;

YROTATION = A;

Rotation angles in 5 axis machines (rotated table) may be calculated as follows:

1st rotation angle = ATAN (*_ORIGIN / *_ORIGIN)

2nd rotation angle = ATAN (*_ORIGIN / (*_ORIGIN * COS [1st rotation angle]))

where * is I, J, or K according to the machine geometry, and ATAN is used as described for 4 axis
machines.

The rotation of the first axis affects the *_ORIGIN of the two other axes. This rotation and the first
axis to be rotated vary between the machine types.

ROT_MAT1 . . . ROT_MAT9

Cimatron GPP 12 ROT_MAT and ORIGIN CHANGE N-3

As explained in this manual, ROT_MAT1. . .ROT_MAT9 are values of MATRIX (3,3). All
coordinates are multiplied by that matrix before “sending” to the post.

The UNIT matrix may be initialized at BEGINNING OF TAPE:

ROT_MAT1=1; ROT_MAT2=0; ROT_MAT3=0;

ROT_MAT4=0; ROT_MAT5=1; ROT_MAT6=0;

ROT_MAT7=0; ROT_MAT8=0; ROT_MAT9=1;

TRANS_MATX=0; TRANS_MATY=0; TRANS_MATZ=0;

After finding the rotation angle (A), ROT_MAT* values should be updated as follows:

Rotation around X axis:

ROT_MAT1=1; ROT_MAT2=0; ROT_MAT3=0;

ROT_MAT4=0; ROT_MAT5=COS(A); ROT_MAT6=–SIN(A);

ROT_MAT7=0; ROT_MAT8=SIN(A); ROT_MAT9=COS(A);

Rotation around Y axis:

ROT_MAT1=COS(A); ROT_MAT2=0; ROT_MAT3=–SIN(A);

ROT_MAT4=0; ROT_MAT5=1; ROT_MAT6=0;

ROT_MAT7=SIN(A); ROT_MAT8=0; ROT_MAT9=COS(A);

Rotation around Z axis:

ROT_MAT1=COS(A); ROT_MAT2=SIN(A); ROT_MAT3=0;

ROT_MAT4=–SIN(A); ROT_MAT5=COS(A); ROT_MAT6=0;

ROT_MAT7=0; ROT_MAT8=0; ROT_MAT9=1;

N-4 ROT_MAT and ORIGIN CHANGE Cimatron GPP 12

Translation Values – TRANS_MAT

The rotation causes the tool end point to move from its original location. Therefore, a translation
must be performed to cancel this error.

The translation values are calculated as follows:

1. Find the physical distance (X, Y and Z) between the origin and the rotation axis, as it will be on
the machine.

2. Rotate those values using the rotation matrix (ROT_MAT1 . . ROT_MAT9).

If the part rotates (rotating table), the physical distance between the origin and rotation axis may be
calculated using the following parameters:

• distance between a fixed point on the machine table and the rotation axis (a

fixed value depending on the machine geometry)

• distance between the MACSYS (MODEL) and the fixed point. Use the POSTPR
interaction ENTER MACH.ZERO, and the GPP parameters X_MACH, Y_MACH
and Z_MACH.

• distance between the MACSYS (MODEL) and the origin, GPP parameters

X_ORIGIN, Y_ORIGIN and Z_ORIGIN.

If the tool rotates (rotating head), the physical distance between the origin and the rotation axis may
be calculated using the following parameters:

• distance between the face of the spindle and the rotation axis (a fixed value

depending on the machine geometry).

• distance between the tool end point and the face of the spindle.

Use the parameter GOUGE LENGTH in the tool definition and the GPP parameter
GOUGE_LEN. As the GOUGE_LEN parameter changes with the tool change, the
translation parameters TRANS_MATX . . . TRANS_MATZ must be updated every tool
change.

Translation Values – ORIGIN CHANGE (Translation Only)

When TRANS_MAT values are 0, the coordinates are expressed in the current origin coordinate
system. To express the coordinates in another origin coordinate system (i.e., the first one), update
TRANS_MAT values as follows:

1. Save the X,Y,Z_ORIGIN of the first origin (i.e., first X,Y,Z).

2. Calculate the TRANS_MAT values:

TRANS_MATX = X_ORIGIN - FIRSTX
TRANS_MATY = Y_ORIGIN - FIRSTY
TRANS_MATZ = Z_ORIGIN - FIRSTZ

Cimatron GPP 12 ROT_MAT and ORIGIN CHANGE N-5

N.4 Upgrading an Existing 4 Axis Post-processor to the New ROTMAC

In previous versions of the GPP, the Tool Path origin had to be located in the rotation axis and the
coordinates were rotated before being sent to the post-processor. Therefore, old post-processors
could handle any rotation or translation problems.

In order to prevent major changes in the original post-processors, new Tool Paths should be created
carefully. This is done as follows:

1. Locate the Tool Path origin in the rotation axis (as in previous versions).

2. Using ROTMAC, define all the origins in the same location as the Tool Path origin (rotation only,
no translation).

Changing the EXF

1. Initialize the UNIT matrix and the translation values at BEGINNING OF TAPE as described earlier
in this appendix.

2. Add the block ORIGIN CHANGE with ROT_MAT1 . . . ROT_MAT9 definitions according to the
relevant rotation axis.

3. There is no need to define the TRANS_MAT parameters every origin change. They remain 0.

4. Rerun DFEXF, DFPOST and UGPPLINK if needed.

N-6 ROT_MAT and ORIGIN CHANGE Cimatron GPP 12

Cimatron GPP 12 ROT_MAT and ORIGIN CHANGE N-7

Figure N-1: Coordinate Systems

N-8 ROT_MAT and ORIGIN CHANGE Cimatron GPP 12

Figure N-2: Machine Types

N.5 Post Processor ROTMAC

*
* 4 axis (tilting table) machine
* The rotation axis is: “Y”.
*
* The FORMAT of parameters that are used in calculations, are redefined
* as “REAL/USER_10". The COORDINATE format is used for output only.
*
* In the POSTPR interaction, the IND. MACHINE ZERO point is the
* red circle on the top/left corner of the machine table
* X=100.000, Y=...., Z=200.000
*
*REAL —> format (3.5) for positioning parameters
*USER_10 —> format (1.7) for I,J,K_ORIGIN and SIN,COS results.
*USER_1 —> INTEGER format for flags.
*
* Flags:
*
* FLAGROTMAC = 1 —> ROT MAC ;
* = 0 —> ORIGIN CHANGE ONLY (no ROT MAC) ;
*
* FLAGEFIRSTORIGIN = 1 —> the current ORIGIN is the first origin in the TAPE
*
*===
FORMAT (USER_10) I_ORIGIN J_ORIGIN K_ORIGIN ;
FORMAT (USER_10) ORIGOLDI ORIGOLDJ ORIGOLDK ;
FORMAT (USER_10) COSY SINY EPS;
FORMAT (USER_10) ROT_MAT1 ROT_MAT2 ROT_MAT3 ROT_MAT4 ROT_MAT5 ;
FORMAT (USER_10) ROT_MAT6 ROT_MAT7 ROT_MAT8 ROT_MAT9 ;
FORMAT (REAL) TRANS_MATX TRANS_MATY TRANS_MATZ ;

FORMAT (REAL) X_ORIGIN Y_ORIGIN Z_ORIGIN ;
FORMAT (REAL) X_HOME Y_HOME Z_HOME ;
FORMAT (REAL) FIRSTORIGINX FIRSTORIGINY FIRSTORIGINZ ;
FORMAT (REAL) YROTATION ;
FORMAT (REAL) H V A ;

* In the case of a rotating table machine
FORMAT (REAL) TABLEDX TABLEDZ;
FORMAT (REAL) TOTALDX TOTALDZ;
FORMAT (REAL) TOTALAFTERROTX TOTALAFTERROTZ;
FORMAT (REAL) DELTAORIGINX DELTAORIGINY DELTAORIGINZ ;
FORMAT (REAL) DELTAFIRSTX DELTAFIRSTY DELTAFIRSTZ ;

* Output format
FORMAT (COORDINATES) XOUT YOUT ZOUT ROUT;
FORMAT (ANGLES) BOUT ;

* Flags:
FORMAT (USER_1) FLAGROTMAC FLAGEFIRSTORIGIN ;
* Constants
FORMAT (USER_10) VERTICAL ;

* INTERACTION ———————————————————
INTERACTION (CHARACTER) “CIRCLES ” CIRCFLAG = “N”;
* ——————————————————————————

NON_MODAL ALL_VAR;
MODAL FLAGROTMAC ;

NEW_LINE_IS $;
OUTPUT \J “.. ” ;

BEGINNING OF TAPE:

Cimatron GPP 12 ROT_MAT and ORIGIN CHANGE N-9

*—Distance between the FIX point on the machine table and the
* rotation center

TABLEDX = 250; TABLEDZ = -200;

FLAGROTMAC = 1;
FLAGEFIRSTORIGIN = 1;
VERTICAL = 1.0;

*—For the first origin change
ORIGOLDI=0; ORIGOLDJ=0; ORIGOLDK=1.0;

*—Unit matrix (MUST be input in this order !!!)
ROT_MAT1 = 1; ROT_MAT2 = 0; ROT_MAT3 = 0;
ROT_MAT4 = 0; ROT_MAT5 = 1; ROT_MAT6 = 0;
ROT_MAT7 = 0; ROT_MAT8 = 0; ROT_MAT9 = 1;
TRANS_MATX = 0; TRANS_MATY = 0; TRANS_MATZ = 0;

output \J “This post processor is a demo for a 4-axis machine”;
output \J “ with a rotating table around the ‘Y’ axis.”;
output \J “The output is expressed in each origin coordinate system,”;
output \J “however the changes to be done in order to use only one origin”;
output \J “ are explained in the Post Processor EXF file.”;
output \J “ ”;
output \J “ ”;
output \J “part file: ” PART_NAME ;
output \J “ ”;
output \J “machine parameters:” ;
output \J “ machine type : ROTATING TABLE ”;
output \J “ distance from the standard point on the ”;
output \J “ machine table to the rotation point (X,Z) = ” TABLEDX “, ” TABLEDZ

;
output \J “ standard point location according to the MACSYS: ” X_MACH “ ” Y_MAC

H “ ” Z_MACH ;
output \J “ ”;
output \J “number of origins in the tape: ” NUM_ORIGS ;
output \J “ ”;
output \J “ ”;

print \j “part file: ” PART_NAME ;
IF_SET (CIRCFLAG _EQ_ “N”) print \j “no circles”; end_if;

END OF TAPE:
output \J “ ”;
output \J “end of tape”;

BEGINNING OF PROC:
output $ “*** ”;
output $ “(PROC: ” PROC_NAME “ ” MOVMNT_NUM “ MOVMENTS)”;

ORIGIN CHANGE:

output \j “ ”;
output \j “ origin = ” curr_orig;
output \j “ i = ” i_origin ;
output \j “ k = ” k_origin ;

*––Output circular motion as string of linear motions in case K_ORIGIN 1 and
* the flag CIRC is “N”
* Normally, a rotating table 4-axis machine can perform circular motion
* at any angle.

IF_SET (K_ORIGIN _NE_ VERTICAL)
IF_SET (CIRCFLAG _EQ_ “N”)

SET_OFF CIR_INTERP ;
ELSE

SET_ON CIR_INTERP ;
END_IF;

END_IF ;

*—Save the first origin data for later use
* in the case of “one origin output”

N-10 ROT_MAT and ORIGIN CHANGE Cimatron GPP 12

IF_SET (FLAGEFIRSTORIGIN _EQ_ 1)
FIRSTORIGINX = X_ORIGIN;
FIRSTORIGINY = Y_ORIGIN;
FIRSTORIGINZ = Z_ORIGIN;
FLAGEFIRSTORIGIN = 0;

END_IF;

*—Check if the new ORIGIN has a different ORIENTATION than the previous
* one

SET_OFF FLAGROTMAC ;
IF_SET (I_ORIGIN _NE_ ORIGOLDI) SET_ON FLAGROTMAC; END_IF;
IF_SET (J_ORIGIN _NE_ ORIGOLDJ) SET_ON FLAGROTMAC; END_IF;
IF_SET (K_ORIGIN _NE_ ORIGOLDK) SET_ON FLAGROTMAC; END_IF;

*—Save the orientation of the current origin
ORIGOLDI=I_ORIGIN;
ORIGOLDJ=J_ORIGIN;
ORIGOLDK=K_ORIGIN;

*—ROTMAC - change the tool orientation
IF_SET(FLAGROTMAC)

*—Calculate the rotation angle of the Y axis.
V=I_ORIGIN; H=K_ORIGIN;
CALL “ATANG2" INPAR V H; OUTPAR A;
YROTATION = A;
COSY = COS(YROTATION); SINY = SIN(YROTATION);
output \j “ angle = ” yrotation;

*—Calculate the ROT_MAT values for the rotating table machine
ROT_MAT1 = COSY ; ROT_MAT2 = 0 ; ROT_MAT3 = -SINY ;
ROT_MAT4 = 0 ; ROT_MAT5 = 1 ; ROT_MAT6 = 0 ;
ROT_MAT7 = SINY ; ROT_MAT8 = 0 ; ROT_MAT9 = COSY ;
output \j “matrix:” ;
output \j “ ” ROT_MAT1 “ ” ROT_MAT2 “ ” ROT_MAT3 ;
output \j “ ” ROT_MAT4 “ ” ROT_MAT5 “ ” ROT_MAT6 ;
output \j “ ” ROT_MAT7 “ ” ROT_MAT8 “ ” ROT_MAT9 ;

*—Calculate the TRANS_MAT values for the rotating table machine
* only in the case of one origin output (when the other origins are
* translated from the first one), otherwise, the TRANS_MAT values
* remain “0".

*.....distance between the rotation center and the ORIGIN
TOTALDX = X_ORIGIN - X_MACH - TABLEDX;
TOTALDZ = Z_ORIGIN - Z_MACH - TABLEDZ;

*.....distance between the rotation center and the ORIGIN
* after the rotation

TOTALAFTERROTX = TOTALDX*ROT_MAT1 + TOTALDZ*ROT_MAT3;
TOTALAFTERROTZ = TOTALDX*ROT_MAT7 + TOTALDZ*ROT_MAT9;
output \j “ ”;
output \j “distance between the current origin and the rotating center:”;
output \j “delta x: ” TOTALAFTERROTX “ delta z: ” TOTALAFTERROTZ;

*.....distance between the ORIGIN and the new position of the ORIGIN
* after the rotation

DELTAORIGINX = TOTALAFTERROTX - TOTALDX;
DELTAORIGINY = 0;
DELTAORIGINZ = TOTALAFTERROTZ - TOTALDZ;

Cimatron GPP 12 ROT_MAT and ORIGIN CHANGE N-11

*.....calculate the distance between the ORIGIN and the FIRST ORIGIN.
* In the case of MULTIORIGINS output, the parameters may be used
* to calculate the MACHINE position of each ORIGIN related to the
* first one. In the case of ONEORIGIN output, TRANS_MAT parameters
* should get the values of DELTAFIRSTX..DELTAFIRSTZ.

DELTAFIRSTX = DELTAORIGINX + (X_ORIGIN - FIRSTORIGINX);
DELTAFIRSTY = DELTAORIGINY + (Y_ORIGIN - FIRSTORIGINY);
DELTAFIRSTZ = DELTAORIGINZ + (Z_ORIGIN - FIRSTORIGINZ);
output \j “ ”;
output \j “distance between the current origin and the first origin:” ;
output \j “delta x: ” DELTAFIRSTX “ delta z: ” DELTAFIRSTZ ;

ELSE
*—origin change without rotation.
* In the case of ONEORIGIN output, TRANS_MAT parameters should get
* the values of DELTAFIRSTX..DELTAFIRSTZ.

DELTAFIRSTX = X_ORIGIN - FIRSTORIGINX;
DELTAFIRSTY = Y_ORIGIN - FIRSTORIGINY;
DELTAFIRSTZ = Z_ORIGIN - FIRSTORIGINZ;

END_IF;

output \j “—————————————————-”;

LINEAR MOTION:
XOUT = X_CURPOS;
YOUT = Y_CURPOS;
ZOUT = Z_CURPOS;
OUTPUT $ “ ” LIN_MOV “ X” XOUT “ Y” YOUT “ Z” ZOUT ;

CIRCULAR MOTION:
XOUT = X_ENDPT;
YOUT = Y_ENDPT;
ZOUT = Z_ENDPT;
OUTPUT $ “ ” CIRC_MOV “ X” XOUT “ Y” YOUT “ Z” ZOUT ;
XOUT = X_CENTER;
YOUT = Y_CENTER;
ZOUT = Z_CENTER;
ROUT = RADIUS_;
OUTPUT “ XC” XOUT “ YC” YOUT “ ZC” ZOUT “ R” ROUT “ ” ARC_ANG “ Deg.”;

N-12 ROT_MAT and ORIGIN CHANGE Cimatron GPP 12

Cimatron GPP 12 ROT_MAT and ORIGIN CHANGE N-13

Figure N-3: Part Description

N-14 ROT_MAT and ORIGIN CHANGE Cimatron GPP 12

Figure N-4: Machine Description o

Index

!

3d qualifier

LINEAR MOTION block 2-4 - 2-5

See also Qualifiers

A

ABS_ANG tool path variable B-1

aftercut qualifier

BEGINNING OF TAPE block 2-4

See also Qualifiers

ARC_ANG tool path variable B-1

Assignment Exec. Block Statement 5-3

See also Executable Block Statements

Assignment statements C-2

AXIS CHANGE block 2-1

See also System-defined blocks

AXIS_ANGLE tool path variable B-1

AXIS_NUM tool path variable B-1

B

beforecut qualifier

END OF TAPE block 2-4

See also Qualifiers

BEGINNING OF PROC block 2-1

See also System-defined blocks

BEGINNING OF SUB block 2-1, 6-1 - 6-2

See also Subroutines

See also System-defined blocks

BEGINNING OF TAPE block 2-1

aftercut qualifier 2-4

See also System-defined blocks

Block Syntax Rules 2-3

See also Post-processor Program File

BLOCK_NUM tool path variable B-1

Blocks A-1

User-defined 2-5 - 2-6

C

Calculator Options L-1

CALL Exec. Block Statement 5-8

See also Executable Block Statements

CALL executable statement C-2

CHECK_OFST tool path variable B-1

CHECK_TOL tool path variable B-1

CIR_INTERP 7-1

CIR_INTERP tool path variable B-1

CIRC_MOV tool path variable B-1

CIRC_TOL tool path variable B-1

CIRCULAR MOTION block 2-1

ctangappr qualifier 2-4

See also System-defined blocks

tangretr qualifier 2-4

CLEAR_LENG tool path variable B-1

CNTRL_NUM tool path variable B-2

CNTRL_X-X tool path variable B-2

CNTRL_Y-Y tool path variable B-2

CNTRL_Z-Z tool path variable B-2

coff qualifier

CUTTER COMPENSATION block 2-4

See also Qualifiers

COMP_3X tool path variable B-2

CON_ANG tool path variable B-2

CONSTANT SPEED block 2-1

See also System-defined blocks

Constants

Control Characters 3-3

Literal 3-3

Special -TAB_ 3-4

CONT_OFST tool path variable B-2

CONT_TOL tool path variable B-2

Control Characters 3-3

See also Constants

Cimatron GPP 12 Index-1

Index

COOLANT block 2-1

See also System-defined blocks

ctangappr qualifier

CIRCULAR MOTION block 2-4

See also Qualifiers

CURR_NAME tool path variable B-2

CURR_ORIG tool path variable B-2

CURR_START tool path variable B-2

CURR_TOOL tool path variable B-2

CUT_FILE tool path variable B-2

CUT_LENGTH tool path variable B-2

CUT_SPEED tool path variable B-2

CUT_WIDTH tool path variable B-2

CUTCOM_OFF tool path variable B-2

CUTCOM_ON tool path variable B-2

CUTTER COMPENSATION block 2-1

coff qualifier 2-4

See also System-defined blocks

CYC_2PLN tool path variable B-2

CYC_CLEAR tool path variable B-2

CYC_CODE tool path variable B-2

CYC_DEPTH tool path variable B-2

CYC_DWELL tool path variable B-2

CYC_DZINIT tool path variable B-2

CYC_PECK tool path variable B-2

CYC_REDUC tool path variable B-2

CYC_RETR tool path variable B-3

CYC_TIMES tool path variable B-3

CYC_XSHFT tool path variable B-3

CYC_YSHFT tool path variable B-3

CYCLE block 2-1

off qualifier 2-4

on qualifier 2-4

See also System-defined blocks

toinit qualifier 2-4

CYCLE_1 tool path variable B-3

CYCLE_10 tool path variable B-3

CYCLE_11 tool path variable B-3

CYCLE_12 tool path variable B-3

CYCLE_2 tool path variable B-3

CYCLE_3 tool path variable B-3

CYCLE_4 tool path variable B-3

CYCLE_5 tool path variable B-3

CYCLE_6 tool path variable B-3

CYCLE_7 tool path variable B-3

CYCLE_8 tool path variable B-3

CYCLE_9 tool path variable B-3

D

DATE_SDD tool path variable B-3

DATE_SMM tool path variable B-3

DATE_SYY tool path variable B-3

DBL_QUOTE tool path variable B-3

Declaration Statements 4-1, C-1

FORMAT 4-2 - 4-3

IDENTICAL 4-4

INTERACTION 4-4

MODAL 4-5

NEW_LINE_IS 4-6

NON_MODAL 4-6

SET_TABS 4-7

DEL_Z_UP tool path variable B-3

DFEXF

Select 1-3, 1-6

DFPOST

Questions 1-5

Select 1-3, 1-5

DIA_COMP tool path variable B-3

DIAMETER_ tool path variable B-3

DOWN_STEP tool path variable B-3

DWELL block 2-2

See also System-defined blocks

E

E_LENGTH tool path variable B-3

END OF PROC block 2-2

See also System-defined blocks

Index-2 Cimatron GPP 12

Index

END OF SUB block 2-2, 6-1 - 6-2

See also Subroutines

See also System-defined blocks

END OF TAPE block 2-2

beforecut qualifier 2-4

See also System-defined blocks

END OF TOOL PATH block 2-1 - 2-2

See also System-defined blocks

END_ANG tool path variable B-3

Error

System J-3

User J-1

Error messages J-1

Executable Block Statements 5-1

Assignment 5-3

CALL 5-8

IF_SET,ELSE 5-3 - 5-5

KEEP 5-2

OUTPUT 5-2

PRINT 5-2

REPEAT,UNTIL 5-7

SET_ON/OFF 5-7

Executable statements C-2

Expressions

Reserved I-1

External POSTPR (EXTPST) 8-1

Input File 8-3

Interactively 8-1

External Program Monitor Routine 1-7 - 1-9

Compile & Link 1-9

Key-in 1-7

F

FACE_ANGLE tool path variable B-3

FACE_GROV tool path variable B-3

FACE_THRD tool path variable B-4

FACTOR_ tool path variable B-4

fast qualifier

LINEAR MOTION block 2-4

See also Qualifiers

FEED block 2-2

See also System-defined blocks

FIN_BYAREA tool path variable B-4

FIN_BYSTEP tool path variable B-4

FIN_DEPTH tool path variable B-4

FIN_DSTEP tool path variable B-4

FIN_MNSTEP tool path variable B-4

FIN_NORMAL tool path variable B-4

FIN_ZIGZAG tool path variable B-4

finish qualifier

See also Qualifiers

THREAD CANNED CYCLE block 2-5

first qualifier

See also Qualifiers

TOOL CHANGE block 2-5

FIXT_COMP tool path variable B-4

Flags 7-1

FORMAT declaration statement C-1

FORMAT Declaration Statement 4-2 - 4-3

See also Declaration Statements

Formats of Variable Values 3-2

See also Variables

full3d qualifier

LINEAR MOTION block 2-4

See also Qualifiers

G

GAUGE_LEN tool path variable B-4

GPP Procedure 1-1

GROOVE CYCLE block 2-2

See also System-defined blocks

GROV_CNTRL tool path variable B-4

GROV_DEL tool path variable B-4

GROV_STEP tool path variable B-4

GROV_WIDTH tool path variable B-4

Cimatron GPP 12 Index-3

Index

H

HOLD_BOT tool path variable B-4

HOLD_CON tool path variable B-4

HOLD_LENG tool path variable B-4

HOLD_NUM tool path variable B-4

HOLD_TOP tool path variable B-4

HOLD_TOT tool path variable B-4

HOLD_WIDTH tool path variable B-4

HOLDER_DIA tool path variable B-4

I

I_COORD tool path variable B-4

I_ORIGIN tool path variable B-4

I_START tool path variable B-5

IDENTICAL declaration statement C-1

IDENTICAL Declaration Statement 4-4

See also Declaration Statements

IF_SET executable statement C-2

IF_SET,ELSE Exec. Block Statement 5-3 - 5-5

See also Executable Block Statements

INNER_GROV tool path variable B-5

INNER_THRD tool path variable B-5

Input File running EXTPST 8-3

See also External POSTPR (EXTPST)

INS_STR tool path variable B-5

INSERT WITH/WITHOUT (SEQUENCING)
block 2-2

See also System-defined blocks

INTERACTION declaration statement C-1

INTERACTION Declaration Statement 4-4

See also Declaration Statements

Interaction variables 3-1

See also Variables

Interactively running EXTPST 8-1

See also External POSTPR (EXTPST)

IX_ORIG tool path variable B-5

J

J_COORD tool path variable B-5

J_ORIGIN tool path variable B-5

J_START tool path variable B-5

JX_ORIG tool path variable B-5

K

K_COORD tool path variable B-5

K_ORIGIN tool path variable B-5

K_START tool path variable B-5

KEEP Exec. Block Statement 5-2

See also Executable Block Statements

KEEP executable statement C-2

KNOT tool path variable B-5

KX_ORIG tool path variable B-5

L

last qualifier

See also Qualifiers

TOOL CHANGE block 2-4 - 2-5

LAYER_NUM tool path variable B-5

LAYER_Z tool path variable B-5

LENG_COMP tool path variable B-6

LIN_MOV tool path variable B-6

LINE_ANG tool path variable B-6

LINE_LENG tool path variable B-6

LINEAR MOTION block 2-2

3d qualifier 2-4 - 2-5

fast qualifier 2-4

full3d qualifier 2-4

ltangappr qualifier 2-5

nibbling qualifier 2-5

normappr qualifier 2-5

normretr qualifier 2-5

See also System-defined blocks

tangappr qualifier 2-5

Literal Constants 3-3

Index-4 Cimatron GPP 12

Index

See also Constants

lower qualifier

See also Qualifiers

Z SURFACE block 2-5

ltangappr qualifier

LINEAR MOTION block 2-5

See also Qualifiers

M

MACSYS_NAM tool path variable B-6

MCH_COOL tool path variable B-6

MCH_DWELL tool path variable B-6

MCH_FEED tool path variable B-6

MESS_STR tool path variable B-6

MESSAGE block 2-2

See also System-defined blocks

MI_ORIGIN tool path variable B-6

MIX_ORIGIN tool path variable B-6

MJ_ORIGIN tool path variable B-6

MJX_ORIGIN tool path variable B-6

MK_ORIGIN tool path variable B-6

MKX_ORIGIN tool path variable B-6

Modal & Non-Modal Status of Variables 3-2

See also Variables

MODAL declaration statement C-1

MODAL Declaration Statement 4-5

See also Declaration Statements

MOVMNT_NUM tool path variable B-6

MX_ORIGIN tool path variable B-6

MY_ORIGIN tool path variable B-6

MZ_ORIGIN tool path variable B-7

N

NEW_LINE_IS declaration statement C-1

NEW_LINE_IS Declaration Statement 4-6

See also Declaration Statements

NEXT_NAME tool path variable B-7

NEXT_TOOL tool path variable B-7

NIB_PITCH tool path variable B-7

NIBBLE block 2-2

See also System-defined blocks

nibbling qualifier

LINEAR MOTION block 2-5

See also Qualifiers

NO_SUBROUT 7-1

NO_SUBROUT tool path variable B-7

NODE_ID tool path variable B-7

NON_MODAL Declaration Statement 4-6

See also Declaration Statements

normappr qualifier

LINEAR MOTION block 2-5

See also Qualifiers

normretr qualifier

LINEAR MOTION block 2-5

See also Qualifiers

NRB_INTERP tool path variable B-7

NUM_LAYERS tool path variable B-7

NUM_ORIGS tool path variable B-7

NUM_SPRING tool path variable A-2, B-7

NURBS MOTION block 2-2

See also System-defined blocks

NURBS MOTION START END tool path
variable B-7

NURBS_DEG tool path variable B-7

NURBS_MOV tool path variable B-7

NURBS_TOL tool path variable B-7

O

off qualifier

CYCLE block 2-4

See also Qualifiers

on qualifier

CYCLE block 2-4

See also Qualifiers

ORIGIN CHANGE block 2-2

See also System-defined blocks

OUTER_GROV tool path variable B-7

Cimatron GPP 12 Index-5

Index

OUTER_THRD tool path variable B-7

OUTPUT Exec. Block Statement 5-2

See also Executable Block Statements

OUTPUT executable statement C-2

Output program file

Sample G-1

OVERLAP_ tool path variable B-7

P

PART_NAME tool path variable B-7

PART_OFST tool path variable B-7

PART_PATH tool path variable B-7

PART_PATH2 tool path variable B-7

PART_PATH3 tool path variable B-8

PART_TOL tool path variable B-8

PFM_UNITS tool path variable B-8

PLATFORM_ tool path variable B-8

POST_NAME tool path variable B-8

POSTPR 1-3

Post-processor program file E-1

Post-processor Program File 1-6, 2-1

Block Syntax Rules 2-3

Compile 1-6

Key-in 1-6

Qualifiers 2-4

System-defined blocks 2-1

User-defined blocks 2-5 - 2-6

Post-processor Program File Example E-1

Post-processor Program File Structure E-1

PRINT Exec. Block Statement 5-2

See also Executable Block Statements

PRINT executable statement C-2

PROC_CMNT tool path variable B-8

PROC_NAME tool path variable B-8

PROC_NUM tool path variable B-8

Procedure Header List F-1

See also Tool Movements

Q

Qualifiers 2-4

3d 2-4 - 2-5

aftercut 2-4

beforecut 2-4

coff 2-4

ctangappr 2-4

fast 2-4

finish 2-5

first 2-5

full3d 2-4

last 2-4 - 2-5

lower 2-5

ltangappr 2-5

nibbling 2-5

normappr 2-5

normretr 2-5

off 2-4

on 2-4

See also Post-processor Program File

spring 2-5

tangappr 2-5

tangretr 2-4

toinit 2-4

R

RADIUS_ tool path variable B-8

REGSTR_1 tool path variable B-8

REGSTR_2 tool path variable B-8

REGSTR_3 tool path variable B-8

REGSTR_4 tool path variable B-8

REPEAT executable statement C-2

REPEAT,UNTIL Exec. Block Statement 5-7

See also Executable Block Statements

RESET executable statement C-2

ROT_MAT 7-1

ROT_MAT tool path variable B-8

RUF_BYAREA tool path variable B-8

Index-6 Cimatron GPP 12

Index

RUF_BYSTEP tool path variable B-9

RUF_DEPTH tool path variable B-9

RUF_DSTEP tool path variable B-9

RUF_MNSTEP tool path variable B-9

RUF_NORMAL tool path variable B-9

RUF_ZIGZAG tool path variable B-9

S

SCALLOP tool path variable B-9

Script after Post-processor H-1

SEGMT_NUM tool path variable B-9

SET_OFF executable statement C-2

SET_ON executable statement C-2

SET_ON/OFF Exec. Block Statement 5-7

See also Executable Block Statements

SET_TABS declaration statement C-1

SET_TABS Declaration Statement 4-7

See also Declaration Statements

SHANK_BOT tool path variable B-9

SHANK_CON tool path variable B-9

SHANK_TOP tool path variable B-9

SHANK_TOT tool path variable B-9

SIDE_STEP tool path variable B-9

Special Constant -TAB_ 3-4

See also Constants

SPIN block 2-2

See also System-defined blocks

SPIN_DIR tool path variable B-9

SPIN_SPEED tool path variable B-9

SPNDL_BOT tool path variable B-9

SPNDL_CON tool path variable B-9

SPNDL_TOP tool path variable B-9

SPNDL_TOT tool path variable B-9

spring qualifier

See also Qualifiers

THREAD CANNED CYCLE block 2-5

SRF_NORX tool path variable B-9

SRF_NORY tool path variable B-9

SRF_NORZ tool path variable B-9

ST_ANG tool path variable B-9

START STRING block 2-2

See also System-defined blocks

START THREAD block 2-2

See also System-defined blocks

STARTS_NUM tool path variable B-9

Statements

Assignment C-2

Declaration C-1

Executable C-2

STEP_INCR tool path variable B-10

STEP_TYPE tool path variable B-10

STEP_VALUE tool path variable B-10

STOP POINTS block 2-2

See also System-defined blocks

SUB_NUMBER tool path variable B-10

SUBROUTINE CALL block 2-2, 6-1 - 6-2

See also Subroutines

See also System-defined blocks

Subroutines 6-1

BEGINNING OF SUB block 6-1

END OF SUB block 6-1

SUBROUTINE CALL block 6-1

System errors J-3

System-defined blocks 2-1

AXIS CHANGE 2-1, A-1

BEGINNING OF PROC 2-1, A-1

BEGINNING OF SUB 2-1, A-3

BEGINNING OF TAPE 2-1, A-3

CIRCULAR MOTION 2-1, A-5

CONSTANT SPEED 2-1, A-5

COOLANT 2-1, A-5

CUTTER COMPENSATION 2-1, A-5

CYCLE 2-1

DWELL 2-2, A-6

END OF PROC 2-2, A-6

END OF SUB 2-2, A-6

END OF TAPE 2-2, A-6

Cimatron GPP 12 Index-7

Index

END OF TOOL PATH 2-1 - 2-2, A-6

FEED 2-2, A-6

GROOVE CYCLE 2-2, A-6

INSERT WITH/WITHOUT
(SEQUENCING) 2-2, A-6

LINEAR MOTION 2-2, A-7

MESSAGE 2-2, A-7

NIBBLE 2-2, A-7

NURBS MOTION 2-2, A-7

ORIGIN CHANGE 2-2, A-7

See also Post-processor Program File

SPIN 2-2, A-8

START STRING 2-2, A-8

START THREAD 2-2, A-8

STOP POINTS 2-2, A-8

SUBROUTINE CALL 2-2, A-8

THREAD CANNED CYCLE 2-2, A-9

THREAD CYCLE 2-2, A-10

THREAD STEP 2-2, A-10

TOOL CHANGE 2-2, A-11

TOOL CHANGE MESSAGE 2-2, A-13

TRANSFORMATION 2-3, A-13

WIRE 2-3, A-14

Z SURFACE 2-3, A-14

T

tangappr qualifier

LINEAR MOTION block 2-5

See also Qualifiers

tangretr qualifier

CIRCULAR MOTION block 2-4

See also Qualifiers

TEETH_NUM tool path variable B-10

THRD_DEPTH tool path variable B-10

THREAD CANNED CYCLE block 2-2

finish qualifier 2-5

spring qualifier 2-5

See also System-defined blocks

THREAD CYCLE block 2-2

See also System-defined blocks

THREAD STEP block 2-2

See also System-defined blocks

TIME_SHH tool path variable B-10

TIME_SMM tool path variable B-10

TIME_SSS tool path variable B-10

toinit qualifier

CYCLE block 2-4

See also Qualifiers

TOOL CHANGE block 2-2

first qualifier 2-5

last qualifier 2-4 - 2-5

See also System-defined blocks

TOOL CHANGE MESSAGE block 2-2

See also System-defined blocks

Tool Movements & Sample Tool Path F-1

Procedure Header List F-1

Tool Path Listing F-2

Tool Path Listing F-2

See also Tool Movements

Tool path variables B-1

Tool Path variables 3-1

See also Variables

TOOL_ANGLE tool path variable B-10

TOOL_CMNT tool path variable B-10

TOOL_MAT tool path variable B-10

TOOL_RAD tool path variable B-10

TOOL_TYPE tool path variable B-10

TP_CMNT tool path variable B-10

TP_NAME tool path variable B-10

TP_TYPE tool path variable B-10

TP1_TYPE tool path variable B-10

TPNM_LOWER tool path variable B-10

TRANS_MAT 7-1

TRANS_MATX tool path variable B-10

TRANS_MATY tool path variable B-10

TRANS_MATZ tool path variable B-10

TRANSF_NUM tool path variable B-10

TRANSFORMATION block

Index-8 Cimatron GPP 12

Index

See also System-defined blocks

TRF_MAT tool path variable B-10

TRF_VECX tool path variable B-10

TRF_VECY tool path variable B-10

TRF_VECZ tool path variable B-10

U

UGPPLINK

Select 1-3

UGPSUB 1-3

User Defined Blocks

Forbidden names I-1

User Defined Variables

Forbidden names I-1

User errors J-1

USER_NAME tool path variable B-10

User-defined blocks 2-5 - 2-6

See also Post-processor Program File

User-defined variables 3-1

See also Variables

V

Variables 3-1

Format B-1

Formats of values 3-2

Interaction 3-1

Modal & Non-Modal Status 3-2

Tool path A-1

Tool Path 3-1, B-1

User-defined 3-1

W

WEIGHT tool path variable B-10

WINT_n tool path variable B-11

WIRE block 2-3

See also System-defined blocks

WREAL_n tool path variable B-11

X

X_AFTR_TCH tool path variable B-11

X_CENTER tool path variable B-11

X_CURPOS tool path variable B-11

X_ENDPT tool path variable B-11

X_HOME tool path variable B-11

X_INTER tool path variable B-11

X_MACH tool path variable B-12

X_ORIGIN tool path variable B-12

X_START tool path variable B-12

Y

Y_AFTR_TCH tool path variable B-12

Y_CENTER tool path variable B-12

Y_CURPOS tool path variable B-12

Y_ENDPT Y tool path variable B-12

Y_HOME tool path variable B-12

Y_INTER tool path variable B-12

Y_MACH tool path variable B-12

Y_ORIGIN tool path variable B-12

Y_START tool path variable B-12

Z

Z SURFACE block 2-3

lower qualifier 2-5

See also System-defined blocks

Z_AFTR_TCH tool path variable B-12

Z_CENTER tool path variable B-12

Z_CURPOS tool path variable B-12

Z_DOWN tool path variable B-12

Z_ENDPT tool path variable B-12

Z_HOME tool path variable B-12

Z_INTER tool path variable B-13

Z_MACH tool path variable B-13

Z_ORIGIN tool path variable B-13

Z_START tool path variable B-13

Z_UP tool path variable B-13

Cimatron GPP 12 Index-9

Index

	Preface
	Introduction
	Ch 1: The Procedure
	Introduction
	The Procedure
	The DFPOST Questions
	The Post- processor Program File
	Preparing An External Program Monitor Routine

	Ch 2: The Post- processor Program File
	Block Syntax Rules
	Qualifiers
	User- defined Blocks

	Ch 2: Variables and Constants
	Formats of Variable Values
	Modal & Non- Modal Status of Variables
	Literal Constants
	Control Characters
	Special Constant – TAB_

	Ch 4: Declaration Statements
	FORMAT
	IDENTICAL
	INTERACTION
	MODAL
	NON_ MODAL
	NEW_ LINE_ IS
	SET_ TABS

	Ch 5: Executable Block Statements
	KEEP
	OUTPUT
	PRINT
	The Assignment Statement
	IF_ SET (Conditional Execution)
	IF_ EXISTS (Conditional Execution)
	REPEAT, UNTIL (Loops)
	Changing the “on/ off” Indicators – and
	CALLing an External Program
	CONVERT
	CUT_ FILE

	Ch 6: Using Subroutines
	Ch 7: System Flags
	Ch 8: External POSTPR (EXTPST)
	App A: Blocks and Their Variables
	App B: Formats for Variables
	App C: Statement Syntax Summary
	C. 1 Declaration Statements
	C. 2 Executable Statements

	App D: DFPOST Questions
	D. 1 Tape Information
	D. 2 Programming Mode and Unit
	D. 3 Formats
	D. 4 Positioning Codes (Not in use after version 5.0)
	D. 5 Messages and Inserts
	D. 6 Machine Parameters
	D. 7 Linear Motion
	D. 8 Circular Motion
	D. 9 NURBS motion
	D. 10 Canned Cycles
	D. 11 Output Files
	D. 12 Interface

	App E: Post- processor Program File Structure
	App F: Sample Tool Path Listing
	Procedure Header List
	Tool Path Listing

	App G: Sample Output Program File
	App H: Script After Post- processor
	App I: Forbidden Names for User Defined Variables and Blocks
	App J: Error Messages
	USER ERRORS
	SYSTEM ERRORS

	App K: Sample External Program Monitor Routine and Subroutine
	App L: Assignment Statement Calculator Options
	App M: List of Existing Procedure Names & Tool Path Types
	App N: ROT_ MAT and ORIGIN CHANGE
	N. 1 Origin Information
	N. 2 Tool Position Information
	N. 3 Machine Position Calculation
	N. 4 Upgrading an Existing 4 Axis Post- processor to the New
	N. 5 Post Processor ROTMAC

